
Caching in on Locality: Spatial and temporal access in SpMV

Antoine Kempf1,2,†, Atsushi Suzuki3, Masado Alexander Ishii3

1 Sorbonne Université, Paris, France
2 Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany

3 RIKEN Center for Computational Science (R-CCS), Kobe, Japan
†This work was conducted during an internship program at RIKEN R-CCS

Caching in on Locality: Spatial and temporal access in SpMV

Abstract: We tackle the memory bottleneck in Sparse Matrix-Vector Multiplication (SpMV) with a memory-access-avoiding paradigm. We reduce intra-
node data traffic by enhancing data locality in three ways: spatially with Nested Dissection, temporally with the Matrix Powers Kernel, and structurally with
4×4 Block-CSR storage. This strategy yields 2× speedup over a straightforward baseline SpMV implementation, demonstrating the importance of locality

for performance on modern architectures.

Context & Motivation

Sparse Matrix-Vector Multiplication (SpMV)
• SpMV is the computational cornerstone of iterative

solvers for continuum mechanics (fluid flow, heat
transfer, elasticity, etc.).

• These physical problems are discretized on
unstructured meshes, resulting in large sparse
matrices with non-uniform patterns.

The Bottleneck
• Using standard CSR format (FP64 + 32-bits indices),

the total memory traffic is high: ~2.5×𝑛𝑛𝑧 + 1.5×𝑛𝑟𝑜𝑤.
• Since only 2 FLOPs are performed per nonzero entry,

the arithmetic intensity is low: < 0.8 FLOPs per word.
• As a consequence, SpMV is strongly memory-bound.

Figure 1: Roofline analysis for single-core SpMV execution on AMD EPYC 7452
and Intel Xeon Gold 5220 processors. The plot shows hardware performance
limits and the achieved SpMV performance using CSR format. This figure is
adapted from the first author’s master’s thesis.

Our Goal
While communication-avoiding algorithms [2] focus on
reducing inter-node communication, we introduce
memory-access-avoiding paradigm that targets the
intra-node memory. By minimizing the Main Memory ↔
Cache traffic, we hope to lift the performance roof.

References
[1] C. Alappat, G. Hager, O. Schenk, and G. Wellein, "Level-Based Blocking for Sparse Matrices: Sparse Matrix-Power-Vector Multiplication," IEEE Transactions on Parallel and Distributed Systems, vol. 34, no. 2, pp. 581–597, 2023
[2] J. Demmel, M. Hoemmen, M. Mohiyuddin and K. Yelick, "Avoiding communication in sparse matrix computations," 2008 IEEE International Symposium on Parallel and Distributed Processing, Miami, FL, USA, 2008, pp. 1-12
[3] G. Karypis and V. Kumar, "A fast and high-quality multilevel scheme for partitioning irregular graphs" SIAM Journal of Scientific Computing, vol. 20, no. 1, pp. 359–392, 1998.

Spatial Locality

Graph Partitioning Strategy
• Since the matrices have unstructred sparsity

patterns, we use graph-based algorithms to
improve the data layout.

• Known methods use Reverse Cuthill—McKee
(RCM) reordering to reduce the matrix
bandwidth or Level-Based Blocking [1] for the
computation of Matrix Powers Kernel (MPK).

• We employ METIS [3] to decompose the
global matrix using Nested Dissection (ND)
ordering.

• ND creates a hierarchy of separator sets
and isolated subdomains, which consist of
internal and boundary sets.

Figure 2: Geometric decomposition by Nested Dissection. The zoom
illustrates the partition of subdomain 4 into Internal nodes (Blue),
Boundary nodes (Red) and Separator nodes (Black).

Two-Phases Access Pattern
1) Operations are performed on the submatrix

portion associated with the internal nodes.
Due to reduced problem size, these
submatrices hopefully fit within the last-
level cache, accelerating vector access.

2) Off-diagonal blocks, representing
connections between submatrices and
separators, retain the default random-access
pattern.

Figure 3: Global matrix reordering by Nested Dissection. The
permutation isolates independant subdomains into Diagonal Blocks
(Grey 4—7), pushing dependencies to the Off-Diagonal Blocks
(Cyan) which connect subdomains to separators .

Temporal Locality

Matrix Powers Kernel (MPK)
• We target the computation of the sequence

𝐴𝑥,… ,𝐴"𝑥 , which is the heart of Krylov subspace
methods.

• Interleave internal and boundary subtasks across
powers to immediately reuse matrix coefficients,
rather than stream through the whole matrix for each
power.

• Partitioning by ND ordering allows us to compute the
next vector step 𝐴"#$𝑥 on internal indices while the
boundary indices of the current step 𝐴"𝑥 are still
being processed.

• Case study: SpM2V kernel (𝑥 → 𝐴𝑥 → 𝐴%𝑥).

Figure 4: Local Data Flow & Dependencies (𝑥 → 𝑦 → 𝑧). The highlights in Red
(𝐴!! , 𝐴!") shows the blocks used for both steps: it is load once and reuse to
compute 𝑧! immediatly after 𝑦! .

Structural Locality

Fluid Dynamics Context
• The finite element approximation for fluid flow

involves 3 velocity components + 1 pressure = 4
degrees of freedom per node.

• Natural 4×4 dense blocks within the sparse matrix.

Figure 5: Visualization of 3D flow around an ellipsoid and the irregular mesh
used for the simulation.

Block-CSR & SIMD Vectorization
• Block-CSR (BSR) format with block of size 4.
• The 4×4 block of FP64 values fits perfectly into 256-

bit AVX2 registers with 4 vector length.
• The Fused Multiply-Add (FMA) operation is

vectorized in column-major order to maximize
throughput using explicit AVX2 intrinsics
(_mm256_fmadd_pd).

Figure 6: Schematic illustration of one fused multiply-add: the first column of 𝐴
is multiplied by the corresponding entry of 𝑥 and accumulated into 𝑦.

Results

• Hardware: AMD Ryzen 9 5950X (16-core, Zen 3) and Intel Xeon
Platinium 8368 (38-core, Ice Lake).

• Test Case: GMRES solver running 100 SpMV or 50 SpM2V iterations.
• Matrix : 5-layers Nested Dissection decomposition of Stokes Matrix

(n=226,820, nnz=12,984,688).
• Baseline: Standard SpMV (CSR) and Intel MKL (oneAPI 2023).

• Pre-processing overhead: the METIS reordering takes 2.108 sec
(amortized over linear/non-linear solver iterations).

• Step by step gain: ND and Register Blocking + SIMD vectorization
provide the initial speedup by improving spatial locality.

• The fused kernel SpM2V provides the final performance leap by
exploiting temporal locality in the cache.

Future Work
• The ND ordering naturally exposes parallelism, but the load balance

must be treated explicitely to obtain good performance.
• Parallelization must be achieved by blocking nonzero entries of the

matrix, especially on the ND separators.

