Caching in on Locality: Spatial and temporal access in SpMV
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Abstract: We tackle the memory bottleneck in Sparse Matrix-Vector Multiplication (SpMV) with a memory-access-avoiding paradigm. We reduce intra-
node data traffic by enhancing data locality in three ways: spatially with Nested Dissection, temporally with the Matrix Powers Kernel, and structurally with
4x4 Block-CSR storage. This strategy yields 2x speedup over a straightforward baseline SpMV implementation, demonstrating the importance of locality

for performance on modern architectures.

Context & Motivation

Sparse Matrix-Vector Multiplication (SpMV)
SpMV is the computational cornerstone of iterative
solvers for continuum mechanics (fluid flow, heat
transfer, elasticity, etc.).

» These physical problems are discretized on
unstructured meshes, resulting in large sparse
matrices with non-uniform patterns.

The Bottleneck
+ Using standard CSR format (FP64 + 32-bits indices),

the total memory traffic is high: ~2.5xnnz + 1.5xnrow.

+ Since only 2 FLOPs are performed per nonzero entry,
the arithmetic intensity is low: < 0.8 FLOPs per word.

» As a consequence, SpMV is strongly memory-bound.
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Figure 1: Roofline analysis for single-core SpMV execution on AMD EPYC 7452
and Intel Xeon Gold 5220 processors. The plot shows hardware performance
limits and the achieved SpMV performance using CSR format. This figure is
adapted from the first author’s master’s thesis.

Our Goal

While communication-avoiding algorithms [2] focus on
reducing inter-node communication, we introduce
memory-access-avoiding paradigm that targets the
intra-node memory. By minimizing the Main Memory <
Cache traffic, we hope to lift the performance roof.

Temporal Locality

Matrix Powers Kernel (MPK)

+ We target the computation of the sequence
[Ax, ..., Akx], which is the heart of Krylov subspace
methods.

* Interleave internal and boundary subtasks across
powers to immediately reuse matrix coefficients,
rather than stream through the whole matrix for each
power.

« Partitioning by ND ordering allows us to compute the
next vector step A**1x on internal indices while the

boundary indices of the current step A¥x are still .

being processed.
+ Case study: SpM2V kernel (x — Ax — A%x).
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Figure 4: Local Data Flow & Dependencies (x — y — z). The highlights in Red
(A;;,A,;) shows the blocks used for both steps: it is load once and reuse to
compute z, immediatly after y,.

Algorithm 1: Fused SpM2V ; MPK for {z,y = Az, z = A%z}

1 for each subdomain p do

// PHASE 1 : Boundary computation

2 | for rowi € [InternalEnd, End), do
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// PHASE 2 : Fused Internal computation
for row i € [Start, InternalEnd), do

| ylil—AL, L]

for row i € [Start, InternalEnd),, do
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8 for each subdomain p do

// PHASE 3 : Boundary computation
9 | for rowi € [InternalEnd, End), do

" | 2lilAlidxyl:]

Structural Locality

FIU|d Dynamics Context
The finite element approximation for fluid flow
involves 3 velocity components + 1 pressure = 4
degrees of freedom per node.

« Natural 4x4 dense blocks within the sparse matrix.

Figure 5: Visualization of 3D flow around an ellipsoid and the irregular mesh
used for the simulation.

Block-CSR & SIMD Vectorization

« Block-CSR (BSR) format with block of size 4.

« The 4x4 block of FP64 values fits perfectly into 256-
bit AVX2 registers with 4 vector length.

« The Fused Multiply-Add (FMA) operation is
vectorized in column-major order to maximize
throughput using explicit AVX2 intrinsics
(_mm256_fmadd_pd).
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Figure 6: Schematic illustration of one fused multiply-add: the first column of A
is multiplied by the corresponding entry of x and accumulated into y.
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s : Two-Phases Access Pattern Results
Spatlal Loca"ty 1) Operations are performed on the submatrix
portion associated with the internal nodes. + Hardware: AMD Ryzen 9 5950X (16-core, Zen 3) and Intel Xeon

Graph Partitioning Strategy Due to reduced problem size, these Platinium 8368 (38-core, Ice Lake).

+ Since the matrices have unstructred sparsity submatrices hopefully fit within the last- « Test Case: GMRES solver running 100 SpMV or 50 SpM2V iterations.
Paﬂemsythweélste ?rapht-based algorithms to 2 Igf\ﬁ:_cachel, tixlcceklerating vec;(pr access. + Matrix : 5-layers Nested Dissection decomposition of Stokes Matrix
improve the data layout. -diagonal blocks, representing (n=226,820, nnz=12,984,688).

+ Known methods use Reverse Cuthill—McKee connections between submatrices and » Baseline: Standard SpMV (CSR) and Intel MKL (oneAPI 2023).
(RCM) reordering to reduce the matrix separators, retain the default random-access
bandwidth or Level-Based Blocking [1] for the pattern. o AMD Ryzen Intel Xeon
computation of Matrix Powers Kernel (MPK) Optimization step -mavx2 -mno-avx2 MKL 2023 -mavx2 MKL 2023

. Baseli 0908402 451417 0910328 174681  1.89511
We employ_ME‘I_'IS [Blto decqmposc'a the 4 42 41 +a‘1§\13e;::d Dissection (ND)  0.810466  4.23624 0.583493  4.31193  1.79977
gl?jbal matrix using Nested Dissection (ND) + 4x4 blocking 0486842  1.62732 0791543  0.919048  0.925438
ordering. B + SIMD vectorization 0.470057  0.48022 0.788168 —

» ND creates a hierarchy of separator sets 52 5 Fused SpM2V + ND 0.785550 1.36433
and isolated subdomains, which consist of + 4x4 blocking 0.483613 0.846524
i — + SIMD vectorization 0.440538 0.731669
internal and boundary sets. 5 peaipy Specdup vectorizatio 206 2,30

""" ! « Pre-processing overhead: the METIS reordering takes 2.108 sec
72 71 (amortized over linear/non-linear solver iterations).
7 « Step by step gain: ND and Register Blocking + SIMD vectorization
— = provide the initial speedup by improving spatial locality.
H 2 1 « The fused kernel SpM2V provides the final performance leap by
i i exploiting temporal locality in the cache.
H H 3 131
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Figure 2: Geometric decomposition by Nested Dissection. The zoom
illustrates the partition of subdomain 4 into Internal nodes (Blue),
Boundary nodes (Red) and Separator nodes (Black).

Figure 3: Global matrix reordering by Nested Dissection. The

permutation isolates independant subdomains into Diagonal Blocks
(Grey 4—7), pushing dependencies to the Off-Diagonal Blocks .
(Cyan) which connect subdomains to separators .

« The ND ordering naturally exposes parallelism, but the load balance
must be treated explicitely to obtain good performance.
Parallelization must be achieved by blocking nonzero entries of the
matrix, especially on the ND separators.
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