
The rapid advancement of deep learning and high-performance 

computing has driven widespread adoption of low-precision 

floating-point formats in modern hardware accelerators. Brain 

Floating Point (BF16), with its 8-bit exponent and 7-bit mantissa, 

has become popular in AI accelerators due to its hardware 

efficiency and dynamic range comparable to FP32. However, 

many applications in scientific computing and neural network 

training still require FP32-level precision to ensure numerical 

stability and accuracy. This study develops an FMA unit based on 

BF16 operations through decomposing an FP32 datum into 

multiple BF16 data and maintaining the accuracy of FP32.
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(i) Introduction

(ii) Methods

With the decomposition of an FP32 datum into four BF16 data, an FMA 

with customized BF16 multipliers and FP32 adders, which are implemented 

by the native DSP blocks inside the FPGA to high performance, can get 

similar accuracy to the FP32. In future work, the FMA unit will be applied 

to develop a matrix multiplier. 

(iv) Conclusions
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➢  Table 2: Hardware Resource Utilization

❖ Data decomposition. An FP32 datum is decomposed into 

four BF16 data through bit truncation and extension. The 

decomposition is similar as the error free splitting [1].

❖ FMA architecture (Figure 2). Two FP32 data are decomposed 

into A0,A1,A2,A3 and B0,B1,B2,B3, respectively. Therefore：                  

       A × B = A0 + A1 + A2 + A3 × B0 + B1 + B2 + B3
               

❖ Ten terms with an exponent larger than -23 are computed using 

a customized BF16 multiplier, in which two inputs are BF16 

data and the product is FP32 to avoid rounding error. 

❖ The products along the diagonal have the same scale, and they 

are first summed and then scaled. The scaled summations are 

added with C  through adders with FP32 to get the result. 

❖ Simulation results. Table 1 presents the computation results 

of several representative cases. The FP32 and BF16 Direct are 

direct computing results using the FMA with FP32 and BF16, 

respectively. As shown in Table 1, the proposed method can 

obtain the same results as the FP32, and the accuracy is much 

higher than the BF16. 

❖ Hardware resource utilization. The FMA unit is 

implemented using an Intel Stratix 10 FPGA 

(1SG280HU1F50E2VG). The FPGA development 

environment is Quartus Prime Pro 21.2. The customized BF16 

multiplier and FP32 adder are all implemented by the IP cores 

provided by the Quartus Prime Pro. 

(iii) Evaluation Results

➢  Table 1: Computation Results

Reference:

[1] K. Ozaki, T. Ogita, S. Oishi, M. Rummp, 2011. Error-free 

transformations of matrix multiplication by using fast routines of matrix 

multiplication and its applications. Numerical Algorithms, 59(1), 95–118. 
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Figure 1: Data Decomposition

Figure 2: FMA Architecture

Expression FP32 BF16 Direct Proposed method

1.001×0.999+0.999001 1.999000 1.992188 1.999000

1.001953125²+1.00390625 2.007816 2.000000 2.007816

1.0625²+0.12890625 1.257812 1.250000 1.257812

100×200+500 20500.00 20352.00 20500.00

π×e 8.539721 8.437500 8.539721

0.1²+0.99 1.000000 0.996094 1.000000

Logic (ALMs) Registers RAM blocks DSP blocks Clock frequency

735 1474 1 15 390 MHz
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