= % e
%%%@ F A F e NN e 5

IWATE UNIVERSITY RIMZH R-ccs RIKEN Center for Computational Science

An FMA Unit Based on Error-Free Transformation

Xingyu Luft, Y1Yu Tant, Toshiyuki Imamura §
T Faculty of Science and Engineering, Iwate University, Japan
§ RIKEN Center for Computational Science, Japan

(1) Introduction

The rapid advancement of deep learning and high-performance
computing has driven widespread adoption of low-precision B3

BF16 AQ Al A? A3

AOB

floating-point formats in modern hardware accelerators. Brain
Floating Point (BF16), with its 8-bit exponent and 7-bit mantissa,
has become popular in Al accelerators due to 1ts hardware
efficiency and dynamic range comparable to FP32. However,
many applications 1n scientific computing and neural network
training still require FP32-level precision to ensure numerical

B2 AOBZ

B1 AOB

BO A0BO

stability and accuracy. This study develops an FMA unit based on d_) @ @
BF16 operations through decomposing an FP32 datum into N U@ 7 %
multiple BF16 data and maintaining the accuracy of FP32. 3 3 = =
(D (D |l 1l
- I I = O
(i) Methods v i 4 sl =
** Data decomposition. An FP32 datum is decomposed into >UMO UM UM SUM3
four BF16 data through bit truncation and extension. The e \@/
decomposition 1s similar as the error free splitting [1]. //
Algorithm : Splitting of a scalar x € &p3; Into 4 BF16 data ;
(aspitlj] are BF16 data, c[j] are scale factors. Lines 5-7 compute each split data) SUM C
1: function (ap;:[0:3], c[0:3]) = SplitFP32toBF 16(x)

20 Xur=X W Current value to be splited /
for j=0to 3 do
cjl=1j /f Store the displacement value. Scale: 0, 7, 14, 21

Truncate to BF16
Extract the lower 16 bits of the mantissa via subtraction.

4 Add the exponent by + 7 to prevent underflow.

aEpIJ'rU] =truncer1s(Xcur)
Xtmp = flrp3a(Xcur — eXtrp3z(@spitlf]))
Keur = Xtmp & 2!

end for

9: return (asu;:[0:3], c[0:3])

10: end function

truncgrislx): Convert FP32 to BF16 by truncating the mantissa with 7 bits.
extrpsz(a): Extend BF1o to FP32 by padding the low 16 bits with 0

FMA Result

O & e W

Figure 2: FMA Architecture
» Table 1: Computation Results

flrpzz(-): Floating-point operation with FP32 : :
| ; o B N B Expression FP32 BF16 Direct | Proposed method
Reconstruction: x= 2 @uulj] x 2"V =ao+ a1 27 +a; 27 432 1.001%0.999+0.999001 1.999000 1.992188 1.999000
Figure 1: Data Decomposition 1.001953125%+1.00390625 2.007816 2.000000 2.007816
| 1.06252+0.12890625 1.257812 1.250000 1.257812
“* FMA architecture (Figure 2). Two FP32 data are decomposed 100x200+500 20500 00 2035200 20500.00
into A0,A1,A2,A3 and B0,B1,B2,B3, respectively. Therefore . TXe 8 539721 R 437500 R 539721
AXB=(A0+ A1+ A2+ A3) X (BO + B1 + B2 + B3) 0.12+0.99 1.000000 0.996094 1.000000
3 3
_ Z Z (A % B) » Table 2: Hardware Resource Utilization
— i X B;
i=0 j=0 Logic (ALMs) | Registers RAM blocks DSP blocks |Clock frequency
“* Ten terms with an exponent larger than -23 are computed using 735 1474 1 15 390 MHz

a customized BF16 multiplier, in which two 1nputs are BF16
data and the product 1s FP32 to avoid rounding error.

** The products along the diagonal have the same scale, and they
are first summed and then scaled. The scaled summations are
added with C through adders with FP32 to get the result.

(iv) Conclusions

With the decomposition of an FP32 datum into four BF16 data, an FMA
with customized BF16 multipliers and FP32 adders, which are implemented
by the native DSP blocks inside the FPGA to high performance, can get
similar accuracy to the FP32. In future work, the FMA unit will be applied
to develop a matrix multiplier.

Acknowledgements

Thanks for Intel’s donation of the software tools through University
Program. This work was partly supported by the JSPS KAKENHI Grant

(i11) Evaluation Results

< Simulation results. Table 1 presents the computation results
of several representative cases. The FP32 and BF16 Direct are
direct computing results using the FMA with FP32 and BF16,
respectively. As shown 1n Table 1, the proposed method can
obtain the same results as the FP32, and the accuracy 1s much

higher than the BF 1 6 » . | | Number JP25KO3 126
v Hardware resource utilization. The FMA unit 1s

implemented using an Intel Stratix 10 FPGA

(1SG280HU1F50E2VG). The FPGA development | Reference:

[1] K. Ozaki, T. Ogita, S. Oishi, M. Rummp, 2011. Error-free
transformations of matrix multiplication by using fast routines of matrix
multiplication and its applications. Numerical Algorithms, 59(1), 95—-118.

environment 1S Quartus Prime Pro 21.2. The customized BF16
multiplier and FP32 adder are all implemented by the IP cores
provided by the Quartus Prime Pro.

SCA/HPCAsia Jan. 26~29, 2026, Osaka, Japan

	幻灯片 1

