
The rapid advancement of deep learning and high-performance

computing has driven widespread adoption of low-precision

floating-point formats in modern hardware accelerators. Brain

Floating Point (BF16), with its 8-bit exponent and 7-bit mantissa,

has become popular in AI accelerators due to its hardware

efficiency and dynamic range comparable to FP32. However,

many applications in scientific computing and neural network

training still require FP32-level precision to ensure numerical

stability and accuracy. This study develops an FMA unit based on

BF16 operations through decomposing an FP32 datum into

multiple BF16 data and maintaining the accuracy of FP32.

An FMA Unit Based on Error-Free Transformation
Xingyu Lu†, YiYu Tan†, Toshiyuki Imamura §

 † Faculty of Science and Engineering, Iwate University, Japan

§ RIKEN Center for Computational Science, Japan

SCA/HPCAsia Jan. 26~29, 2026, Osaka, Japan

(i) Introduction

(ii) Methods

With the decomposition of an FP32 datum into four BF16 data, an FMA

with customized BF16 multipliers and FP32 adders, which are implemented

by the native DSP blocks inside the FPGA to high performance, can get

similar accuracy to the FP32. In future work, the FMA unit will be applied

to develop a matrix multiplier.

(iv) Conclusions

Acknowledgements

➢ Table 2: Hardware Resource Utilization

❖ Data decomposition. An FP32 datum is decomposed into

four BF16 data through bit truncation and extension. The

decomposition is similar as the error free splitting [1].

❖ FMA architecture (Figure 2). Two FP32 data are decomposed

into A0,A1,A2,A3 and B0,B1,B2,B3, respectively. Therefore：

 A × B = A0 + A1 + A2 + A3 × B0 + B1 + B2 + B3

❖ Ten terms with an exponent larger than -23 are computed using

a customized BF16 multiplier, in which two inputs are BF16

data and the product is FP32 to avoid rounding error.

❖ The products along the diagonal have the same scale, and they

are first summed and then scaled. The scaled summations are

added with C through adders with FP32 to get the result.

❖ Simulation results. Table 1 presents the computation results

of several representative cases. The FP32 and BF16 Direct are

direct computing results using the FMA with FP32 and BF16,

respectively. As shown in Table 1, the proposed method can

obtain the same results as the FP32, and the accuracy is much

higher than the BF16.

❖ Hardware resource utilization. The FMA unit is

implemented using an Intel Stratix 10 FPGA

(1SG280HU1F50E2VG). The FPGA development

environment is Quartus Prime Pro 21.2. The customized BF16

multiplier and FP32 adder are all implemented by the IP cores

provided by the Quartus Prime Pro.

(iii) Evaluation Results

➢ Table 1: Computation Results

Reference:

[1] K. Ozaki, T. Ogita, S. Oishi, M. Rummp, 2011. Error-free

transformations of matrix multiplication by using fast routines of matrix

multiplication and its applications. Numerical Algorithms, 59(1), 95–118.

= ෍

i=0

3

෍

j=0

3

(Ai × Bj)

Figure 1: Data Decomposition

Figure 2: FMA Architecture

Expression FP32 BF16 Direct Proposed method

1.001×0.999+0.999001 1.999000 1.992188 1.999000

1.001953125²+1.00390625 2.007816 2.000000 2.007816

1.0625²+0.12890625 1.257812 1.250000 1.257812

100×200+500 20500.00 20352.00 20500.00

π×e 8.539721 8.437500 8.539721

0.1²+0.99 1.000000 0.996094 1.000000

Logic (ALMs) Registers RAM blocks DSP blocks Clock frequency

735 1474 1 15 390 MHz

Thanks for Intel’s donation of the software tools through University

Program. This work was partly supported by the JSPS KAKENHI Grant

Number JP25K03126.

	幻灯片 1

