‘7‘\\‘>'A' -

-'/ .
(™
\

"Coding a Quantum-HPé Hybrid M C.%EEE

Appl ication With Pyth()n'ba Sec' - Soratouch Pornmaneerattanatrit, Miwako Tsuji?,
Ketan Maheshwari?, Mitsuhisa Sato!?

Workflow Orchestrator System sy
on Su pe FCOnM puterfuga ku 20ak Ridge National Laboratory, Tennessee, USA

This poster is based on results obtained from a project, JPNP20017, commissioned by the New
/ﬁ Energy and Industrial Technology Development Organization (NEDO).

Il Introduction & Python-based Workflow for
The improvement of Quantum Computer (QC) hardware in recent ¢ Quantum'HPC Hybl‘ld APP"CatIOI‘I

vears has offered alternative solutions to some application previously
limited by the classical algorithm. Quantum application cannot run
purely on QC alone, it still cooperates with classical computer by
preparing the input or quantum circuit, interpreting the output, and if
the algorithm has further computing steps, the results from the QC
will utilize In later steps. All quantum applications are quantum-
classical hybrid applications in nature. However, running any simulator,
it required the computing power of High-Performance Computer
(HPC). Likewise, large quantum applications also require HPC to
prepare a larger input, more complex quantum circuits, and calculate
the post-processing task if hecessary.

r 4

TaskRunner

Normally, HPC resource management can only allocate one type of
resource for one job. However, a Quantum-HPC hybrid application
requires two types of computing resources. We developed a Python-
based workflow orchestrator system to uncomplicated the job
submission with multiple resource types. We developed this system
for the Python-based application because major quantum libraries are
Python-based, but the system is able to add the function to execute
the non-Python-base binary and cooperate with the Python code. This
workflow orchestrator system connects to the job scheduler of the
supercomputer Fugaku via the PSI/]J and the wrapper that we
developed.

E=clfarks PE L"F_.I —» | Job Scheduler
h,

b

** Coding Quantum-HPC Hybrid Application with Python-based Workflow

from prefect import task, flow Sp?gx:c{table" ' /path/to/python/binary’ <SPEC>
from prefect_psij import PSIJTaskRunner . . o P Py . Yoo
: : : gqueue_name': 'resource_qgueue', : , : ,
from datetime import timedelta , S . . if _name__ == "'_main__':
{MDort os duration': timedelta(minutes = 30), df = main flow shor algorithm()
P 'custom_attributes': { B - - -atg

: ‘group': 'group_name',
from ;oo tmport ... 'node_shape.node': '1'
import ... 13}

@f Low
def main_flow_shor_algorithm(); <SPEC>
with PSIJTaskRunner(instance='pjsub', job_spec=spec) as tr: I
gc_job = tr.submit(@ 7 @
task = gc_task_func,
parameters = {}

)
gc_result = gqc_job.result()

hpc_resElt = hp(lt_ﬂow(gc_result, 8)@ Quantum
return hpc_result [3
ackend
XD
- 2.2
def shor_circuit(g, qubits): Create
qc =.QL_JantumC'chu'1t(. qubits + 4, qubits) Quantum
for 1 in range(qubits): . i
qc.h(i1) C"‘CUlt
gc.x(qubits) _ /2 3
for i1 in range(qubits): e - .
qc.append(c_amodl5(a,2**1),[1]+[k + qubits for k in range(4)]) Quantum Tl‘anspllek
qc.append(qft_dagger(qubits), range(qubits)) 1 1
gc.measure(range(qubits), range(qubits)) HPC Op_tlml_ze
return qc Hybrid < C"‘CUlt
etask @ Python - (2.4
def gc_task_func(): l\ I. 't. _,/
PPlication q
service = QiskitRuntimeService(...) 2 1 (Shor’s Run
backend = service.backend('ibm_xxx') . . ant m
Algorithm) Qgirc Lilt Execution
qc = shor_circuit(a = 7, qubits = 8) @ u h
pm = generate_preset_pass_manager(
backend = backend, optimization_level =1) @ Quantum TaSk
1sa_qc = pm.run(qc)

sampler = SamplerV2(mode = backend, options = {
'default_shots': 10000 })

result = samler.run([isa_gc]).result() @
return result

@flow(task _runner = PSIJTaskRunner(_ Y,
instance = 'pjsub’',
SPEC) iob_spec = spec, *
work_directory = os.getcwd()
))
def hpc_flow(qc_result, qubits):<::::>
return hpc_task_func.submit(qc_result, qubits).result()
@task e
def hpc_task_func(gc_result, qubits):
counts = gc_result[0].join_data().get_counts() - .= °<
rows = []
for output in counts:
decimal = int(output, 2)
phase = decimal / (2**qubits)
frac = Fraction(phase).limit_denominator(15)
rows .append([
f"{output}(bin) = {decimal}(dec)",
f"{decimal}/{2**qubits} = {phase:.5f}",
f"{frac.numerator}/{frac.denominator}",
f"{frac.denominator}"
1)

headers = ["Register Output","Phase","Fraction","Guess for r"]
return pd.DataFrame(rows, columns=headers)

HPC Task

Workflow Initialize Script
GitHub Repository

Shor’s Algorithm
Source code

	Slide 1

