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Number of particles: 4096> Grid sizes: 2048° and 40963
System: Supercomputer Fugaku
- 48 cores per node, 2.0 GHz

- Total nodes: 158976
 Nodes used in this study: 128-2048
- Configuration: 12 threads, 4 processes per node

Uniform distribution (Grid size : 20483)

Introduction

Gravitational N-body simulations and Methods

Gravitational N-body simulations numerically solve particle motion under
mutual gravitational interactions.

Computational approaches:
» Direct summation : O(N?) complexity — impractical for large N
* Particle Mesh (PM);;) . Approximate potential on uniform grid via FFT
* TreePMp : PM + Tree — widely used 1n cosmological simulations

FFT parallelization efficiency determines overall PM performance at scale.

Problem and Motivation
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Comprehensive performance evaluation including communication costs
is needed to identity optimal FFT implementations at each scale.

Method

* FFTW & FFTE-1D: Slab decomposition limits maximum processes,
causing performance plateau.

* FFTE-2D: Higher process limit enables continued scaling.

* heFFTe: Additional overhead from data conversion to pencil format.

Overview of Particle Mesh Method Non-uniform distribution (Grid size : 2048°)
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4. Update particle positions and velocities from computed forces. o o | |
* Process range 1s limited due to particle imbalance in non-uniform

Steps 1 through 4 are iterated to advance the simulation. distribution
* Execution time increases compared to uniform case
Differences in FFT Input Data Structures - Scaling efficiency slightly degrades due to non-uniformity
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cube decomposition.
*heFFTe accepts 3D input but internally performs FFT 1n pencil configuration. Summary

FFT libraries employ different parallelization structures: slab, pencil, or

Particle Distributions Used Slab decomposition plateaus at process count = grid size, while pencil
decomposition scales beyond this limit.
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