
How to Make Data Pipeline Scalable: A Case Study for Healthcare
Data Analytics

Atakan Gelecek, Pinar Karagoz
Ismail Hakki Toroslu

Middle East Technical University,
Computer Eng. Dept.

Ankara, Turkey

Motivation
• Large healthcare datasets require reliable orchestration,
scalable ingestion, and repeatable analytics.
• Passing large intermediate data through orchestration
metadata mechanisms can hit size/memory limits.

•On the LRZ cloud, end-to-end runtime is dominated by ingestion
(Kafka → DB) and consumer analytics, while setup and sorting
contribute relatively little.
• Increasing resources—especially RAM—consistently reduces
runtime, with the strongest gains under heavier settings (larger
batches/datasets), highlighting the importance of memory and
parallel execution for throughput.
•When the data does not fit in memory, performance is typically
limited by database/disk I/O, and when most data is cached, it is
typically limited by CPU time for parsing and aggregation.
•Airflow + Kafka enables scalable processing of large healthcare
datasets by streaming data between tasks instead of passing large
in-memory payloads that can hit Airflow size limits.

This research received the support of the EXA4MIND project, funded by the European Union's Horizon Europe Research and Innovation Programme, under Grant Agreement N° 101092944. Views
and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission.

Stephan Hachinger
Leibniz Supercomp.Centre(BAdW-LRZ)

Garching b.M., Germany

Jan Martinovic
IT4Innovations, VSB - TU Ostrava

Czech Republic

Objectives
• To analyze distributed analytics pipeline through a case study
that ingests healthcare demographic data and produces two
demographic visualizations.
• Identify performance bottlenecks and characterize how runtime
changes with CPU/RAM and batch settings.

Case study: Access demographic information of citizens from a
national healthcare data collection.
Visual analytics produced:
• Age–gender distribution: counts by gender across 6-year age
bins (bar chart).
• Location cohort heatmap: counts by location (hotel) and age bin
(heatmap; shown for Top-20 locations and summed over
genders).

Figure 1: Airflow DAG and Kafka-based data and work flow in the healthcare
pipeline.

Table 1: Runtime Breakdown per Pipeline Task Across LRZ Cloud Configurations(CPU, RAM, and batch size variations in the LRZ cloud environment, in hrs.min.sec)

Why Airflow: Chosen for DAG-based
orchestration with scheduling, retries,
and monitoring, and for straightforward
integration of our analytics steps as
pipeline tasks.
Why Kafka: Chosen because it streams
and buffers data between Airflow tasks,
which avoids large in-memory transfers
and prevents hitting Airflow task data-
size limits.
Benchmark setup: Runs on the LRZ
cloud, varying CPU cores, RAM, and batch
size.

Motivation and Objectives

Pipeline and Architecture

Performance Results and Conclusions

Pipeline design: The workflow is orchestrated with Apache Airflow
and uses Kafka for bounded-memory data exchange between
tasks.
Hybrid Environment and Dask Optimization:
• Tested in hybrid environments combining HPC systems and
cloud infrastructure.
• Used Dask for parallelizing PostgreSQL queries, improving access
speed and processing efficiency for large datasets.

Figure 1: Airflow DAG and Kafka-based data and work flow in the healthcare pipeline.


