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Motivation and Objectives

Motivation Objectives

* To analyze distributed analytics pipeline through a case study
that ingests healthcare demographic data and produces two
demographic visualizations.

* Large healthcare datasets require reliable orchestration,
scalable ingestion, and repeatable analytics.

* Passing large intermediate data through orchestration

metadata mechanisms can hit size/memory limits. * |dentify performance bottlenecks and characterize how runtime

changes with CPU/RAM and batch settings.

Pipeline and Architecture

Pipeline design: The workflow is orchestrated with Apache Airflow
and uses Kafka for bounded-memory data exchange between
tasks.

Case study: Access demographic information of citizens from a
national healthcare data collection.

Visual analytics produced:

e er . Hybrid Environment and Dask Optimization:
 Age—gender distribution: counts by gender across 6-year age

bins (bar chart).

* Location cohort heatmap: counts by location (hotel) and age bin
(heatmap; shown for Top-20 locations and summed over

* Tested in hybrid environments combining HPC systems and
cloud infrastructure.

» Used Dask for parallelizing PostgreSQL queries, improving access

genders). speed and processing efficiency for large datasets.
Data Flow: ----------»
Work Flow: ----------- i

create_table ]

Why Airflow: Chosen for DAG-based
orchestration with scheduling, retries,
and monitoring, and for straightforward
integration of our analytics steps as
pipeline tasks.

Why Kafka: Chosen because it streams
and buffers data between Airflow tasks,
which avoids large in-memory transfers
and prevents hitting Airflow task data-

size limits.
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[ from_queue-1_to_database }

Lfrom_queue-2_to_location_age_heatmap ],

Benchmark setup: Runs on the LRZ
cloud, varying CPU cores, RAM, and batch
size.

[ from_queue-3_to_age-gender_bar_chartl

Figure 1: Airflow DAG and Kafka-based data and work flow in the healthcare pipeline.

Performance Results and Conclusions

Table 1: Runtime Breakdown per Pipeline Task Across LRZ Cloud Configurations(CPU, RAM, and batch size variations in the LRZ cloud environment, in hrs.min.sec)

. 2 Core CPU, 4 Core CPU, 4 Core CPU, 10 Core CPU, 4 Core CPU, 10 Core CPU,
Environment

9GBRAM 18GBRAM 18GBRAM 45GBRAM 18GBRAM 45GB RAM *On the LRZ cloud, end-to-end runtime is dominated by ingestion
Data Size 2.6GB 2.6GB 2.6GB 2.6GB 7.7GB 7.7GB (Kafka - DB) and consumer analytics, while setup and sorting
Batch Size 10000 10000 100000 100000 100000 100000 contribute relatively little.
Tasks Duration Duration Duration Duration Duration Duration . . .

* Increasing resources—especially RAM—consistently reduces

create_queues 00.00.01 00.00.02 00.00.02 00.00.02 00.00.02 00.00.02 . . . . )
fetch_data 00.00.00  00.00.00  00.00.00 00.00.00 00.00.00 00.00.00 runtime, with the strongest gains under heavier settings (larger
create_tables 00.00.00 00.00.00 00.00.00 00.00.00 00.00.00 00.00.00 : : : :
send_queue-1 00.48.42 00.19.20 00.15.04 00.19.29 00.40.25 00.29.17 batches/datasets), highlighting the importance of memory and
from_queue-1_to_db 00.49.08 00.19.58 00.15.18 00.19.35 00.40.47 00.29.33 parauel execution fOr th rOughput.
sort_data 00.04.11 00.02.02 00.01.59 00.01.14 00.06.01 00.05.33
produce_hotel_ ° - y y
age_cohorts_ 02.16.35 00.31.47 00.25.57 00.11.03 00.56.13 00.43.35 \{Vh?h the data does n.Ot fit in memory, performanc.e s ty plcal.ly .
send_to_queue-2 limited by database/disk I/O, and when most data is cached, it is
from_queue- . . . . . .
2_to_hotel_age 03.10.15 00.40.32 00.43.27 00.31.57 01.42.55 01.18.37 typically limited by CPU time for parsing and aggregation.
_heatmap . .
produce_age_g » Airflow + Kafka enables scalable processing of large healthcare
z”ﬂirajgﬂjgn el Ciadly OREsd Wikl OhMdes LD datasets by streaming data between tasks instead of passing large
from_queue- iIn-memory payloads that can hit Airflow size limits.
3_to_age_gend 03.08.33 01.00.22 00.51.29 00.44.45 02.01.21 01.36.20
er_barchart
Total Time 03.10.24 01.00.28 00.51.38 00.44.59 02.01.27 01.36.24
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