§/ EXAHMIND

How to Make Data Pipeline Scalable: A Case Study for Healthcare
Data Analytics

Stephan Hachinger
Leibniz Supercomp.Centre(BAdW-LRZ)
Garching b.M., Germany

Atakan Gelecek, Pinar Karagoz
Ismail Hakki Toroslu
Middle East Technical University,
Computer Eng. Dept.
Ankara, Turkey

Jan Martinovic
IT4lnnovations, VSB - TU Ostrava
Czech Republic

Motivation and Objectives

Motivation Objectives

* To analyze distributed analytics pipeline through a case study
that ingests healthcare demographic data and produces two
demographic visualizations.

* Large healthcare datasets require reliable orchestration,
scalable ingestion, and repeatable analytics.

* Passing large intermediate data through orchestration

metadata mechanisms can hit size/memory limits. * |dentify performance bottlenecks and characterize how runtime

changes with CPU/RAM and batch settings.

Pipeline and Architecture

Pipeline design: The workflow is orchestrated with Apache Airflow
and uses Kafka for bounded-memory data exchange between
tasks.

Case study: Access demographic information of citizens from a
national healthcare data collection.

Visual analytics produced:

e er . Hybrid Environment and Dask Optimization:
 Age—gender distribution: counts by gender across 6-year age

bins (bar chart).

* Location cohort heatmap: counts by location (hotel) and age bin
(heatmap; shown for Top-20 locations and summed over

* Tested in hybrid environments combining HPC systems and
cloud infrastructure.

» Used Dask for parallelizing PostgreSQL queries, improving access

genders). speed and processing efficiency for large datasets.
Data Flow: ----------»
Work Flow: ----------- i

create_table]

Why Airflow: Chosen for DAG-based
orchestration with scheduling, retries,
and monitoring, and for straightforward
integration of our analytics steps as
pipeline tasks.

Why Kafka: Chosen because it streams
and buffers data between Airflow tasks,
which avoids large in-memory transfers
and prevents hitting Airflow task data-

size limits.

2

[from_queue-1_to_database }

Lfrom_queue-2_to_location_age_heatmap],

Benchmark setup: Runs on the LRZ
cloud, varying CPU cores, RAM, and batch
size.

[from_queue-3_to_age-gender_bar_chartl

Figure 1: Airflow DAG and Kafka-based data and work flow in the healthcare pipeline.

Performance Results and Conclusions

Table 1: Runtime Breakdown per Pipeline Task Across LRZ Cloud Configurations(CPU, RAM, and batch size variations in the LRZ cloud environment, in hrs.min.sec)

. 2 Core CPU, 4 Core CPU, 4 Core CPU, 10 Core CPU, 4 Core CPU, 10 Core CPU,
Environment

9GBRAM 18GBRAM 18GBRAM 45GBRAM 18GBRAM 45GB RAM *On the LRZ cloud, end-to-end runtime is dominated by ingestion
Data Size 2.6GB 2.6GB 2.6GB 2.6GB 7.7GB 7.7GB (Kafka - DB) and consumer analytics, while setup and sorting
Batch Size 10000 10000 100000 100000 100000 100000 contribute relatively little.
Tasks Duration Duration Duration Duration Duration Duration . . .

* Increasing resources—especially RAM—consistently reduces

create_queues 00.00.01 00.00.02 00.00.02 00.00.02 00.00.02 00.00.02)
fetch_data 00.00.00 00.00.00 00.00.00 00.00.00 00.00.00 00.00.00 runtime, with the strongest gains under heavier settings (larger
create_tables 00.00.00 00.00.00 00.00.00 00.00.00 00.00.00 00.00.00 : : : :
send_queue-1 00.48.42 00.19.20 00.15.04 00.19.29 00.40.25 00.29.17 batches/datasets), highlighting the importance of memory and
from_queue-1_to_db 00.49.08 00.19.58 00.15.18 00.19.35 00.40.47 00.29.33 parauel execution fOr th rOughput.
sort_data 00.04.11 00.02.02 00.01.59 00.01.14 00.06.01 00.05.33
produce_hotel_ ° - y y
age_cohorts_ 02.16.35 00.31.47 00.25.57 00.11.03 00.56.13 00.43.35 \{Vh?h the data does n.Ot fit in memory, performanc.e s ty plcal.ly .
send_to_queue-2 limited by database/disk I/O, and when most data is cached, it is
from_queue-
2_to_hotel_age 03.10.15 00.40.32 00.43.27 00.31.57 01.42.55 01.18.37 typically limited by CPU time for parsing and aggregation.
_heatmap . .
produce_age_g » Airflow + Kafka enables scalable processing of large healthcare
z”ﬂirajgﬂjgn el Ciadly OREsd Wikl OhMdes LD datasets by streaming data between tasks instead of passing large
from_queue- iIn-memory payloads that can hit Airflow size limits.
3_to_age_gend 03.08.33 01.00.22 00.51.29 00.44.45 02.01.21 01.36.20
er_barchart
Total Time 03.10.24 01.00.28 00.51.38 00.44.59 02.01.27 01.36.24

This research received the support of the EXA4MIND project, funded by the European Union's Horizon Europe Research and Innovation Programme, under Grant Agreement N° 101092944. Views
and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission.

§/ EXAHMIND

Funded by
the European Union

