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Motivation
• Large healthcare datasets require reliable orchestration,
scalable ingestion, and repeatable analytics.
• Passing large intermediate data through orchestration
metadata mechanisms can hit size/memory limits.

•On the LRZ cloud, end-to-end runtime is dominated by ingestion
(Kafka → DB) and consumer analytics, while setup and sorting
contribute relatively little.
• Increasing resources—especially RAM—consistently reduces
runtime, with the strongest gains under heavier settings (larger
batches/datasets), highlighting the importance of memory and
parallel execution for throughput.
•When the data does not fit in memory, performance is typically
limited by database/disk I/O, and when most data is cached, it is
typically limited by CPU time for parsing and aggregation.
•Airflow + Kafka enables scalable processing of large healthcare
datasets by streaming data between tasks instead of passing large
in-memory payloads that can hit Airflow size limits.
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Objectives
• To analyze distributed analytics pipeline through a case study
that ingests healthcare demographic data and produces two
demographic visualizations.
• Identify performance bottlenecks and characterize how runtime
changes with CPU/RAM and batch settings.

Case study: Access demographic information of citizens from a
national healthcare data collection.
Visual analytics produced:
• Age–gender distribution: counts by gender across 6-year age
bins (bar chart).
• Location cohort heatmap: counts by location (hotel) and age bin
(heatmap; shown for Top-20 locations and summed over
genders).

Figure 1: Airflow DAG and Kafka-based data and work flow in the healthcare
pipeline.

Table 1: Runtime Breakdown per Pipeline Task Across LRZ Cloud Configurations(CPU, RAM, and batch size variations in the LRZ cloud environment, in hrs.min.sec)

Why Airflow: Chosen for DAG-based
orchestration with scheduling, retries,
and monitoring, and for straightforward
integration of our analytics steps as
pipeline tasks.
Why Kafka: Chosen because it streams
and buffers data between Airflow tasks,
which avoids large in-memory transfers
and prevents hitting Airflow task data-
size limits.
Benchmark setup: Runs on the LRZ
cloud, varying CPU cores, RAM, and batch
size.
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Pipeline design: The workflow is orchestrated with Apache Airflow
and uses Kafka for bounded-memory data exchange between
tasks.
Hybrid Environment and Dask Optimization:
• Tested in hybrid environments combining HPC systems and
cloud infrastructure.
• Used Dask for parallelizing PostgreSQL queries, improving access
speed and processing efficiency for large datasets.

Figure 1: Airflow DAG and Kafka-based data and work flow in the healthcare pipeline.


