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LLM-Driven Code Optimisation Case Studies & Results
High-performance computing (HPC) relies heavily on e Matrix Transpose
accelerators, but optimising project-specific CUDA kernels . achieved 643 GB/s throughput
requires deep architectural expertise and significant . reward hacking"copy" strategy found for symmetric
development time. matrices, reaching 87% of cuBLAS performance
The Gap: While LLMs have been explored for code * Matrix Multiplication
generation, prior work such as Al CUDA Engineer [1],  achieved 9.5 TFLOP/s
KernelBench [2], and NVIDIA’s attention kernel * reached 72% of cuBLAS performance.
optimisation [3] focus on Deep Learning kernels and often » zero slowdowns observed during evolution (figures below
reports performance slowdowns or instability. show evolution trend)
Our Solution: We introduce KernelEvolve, a workflow * N-body Solver
using the genetic algorithm approach AlphaEvolve [4] and » achieved 8.5 TFLOP/s (54% of peak FP32 performance)
its open-source implementation OpenEvolve [5] that * Use of fused multiple add (FMA) intrinsics
leverages LLMs for stable, iterative CUDA optimisation * Increase instruction level parallelism
targeting scientific workloads. * two generated programs failed to compile

* single slowdown (0.899x) at iteration 2 in generation

* |Linear Equation Solver

 achieved 13.6 TFLOP/s (87% of peak FP32 performance )
The KernelEvolve Workflow * redesigned work distribution

* applied dynamic grid sizing
* single slowdown (0.998x) observed in generation 2

It automates the optimisation loop following the AlphaEvolve
algorithm and the OpenEvolve implementation, powered by
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« Randomly choose from Flash(0.6) and Pro(0.4) LLM. Reproducibility

 Temperature=0.7 and P=0.95 for controlled creativity throughout
the optimisation exploration

Prompts: Future Works
« System

* Role: “Expert CUDA GPU programmer specialising in NVIDIA V100”.

« Safety Constraints:
[X] MUST NOT CHANGE: Kernel signature, input/output types, launch mapping.

 https://github.com/einzigsue/KernelEvolveResult

 Work on programs in other languages such as gFortran

* Work on other GPUs such as H200 and MI250X
 Explore more LLMs

[0] ALLOWED TO OPTIMIZE: Memory patterns, shared memory, vectorization, ° Initialise from hOSt(CPU) COde tO aUtomatiCa”y tranSIate tO
thread block shape. device(GPU) code

e Success Criteria:
- Compilation: CUDA kernel must compile without errors.
- Correctness: Output must match baseline kernel for all valid input.

- Performance: 5-15% improvement in effective performance score, find best trade-off Refe rences.

between compute throughput and memory throughput.
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