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LLM-Driven Code Optimisation
High-performance computing (HPC) relies heavily on 
accelerators, but optimising project-specific CUDA kernels 
requires deep architectural expertise and significant 
development time.


The Gap: While LLMs have been explored for code 
generation, prior work such as AI CUDA Engineer [1], 
KernelBench [2], and NVIDIA’s attention kernel 
optimisation [3] focus on Deep Learning kernels and often 
reports performance slowdowns or instability.


Our Solution: We introduce KernelEvolve, a workflow 
using the genetic algorithm approach AlphaEvolve [4] and 
its open-source implementation OpenEvolve [5] that 
leverages LLMs for stable, iterative CUDA optimisation 
targeting scientific workloads.
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Case Studies & Results
• Matrix Transpose 


• achieved 643 GB/s throughput

• reward hacking"copy" strategy found for symmetric 

matrices, reaching 87% of cuBLAS performance


• Matrix Multiplication

• achieved 9.5 TFLOP/s

• reached 72% of cuBLAS performance.

• zero slowdowns observed during evolution (figures below 

show evolution trend)


• N-body Solver 

• achieved 8.5 TFLOP/s (54% of peak FP32 performance)

• Use of fused multiple add (FMA) intrinsics

• Increase instruction level parallelism

• two generated programs failed to compile

• single slowdown (0.899x) at iteration 2 in generation 1


• Linear Equation Solver

• achieved 13.6 TFLOP/s (87% of peak FP32 performance )

• redesigned work distribution

• applied dynamic grid sizing

• single slowdown (0.998x) observed in generation 2

The KernelEvolve Workflow
It automates the optimisation loop following the AlphaEvolve 
algorithm and the OpenEvolve implementation, powered by 
LLMs (Gemini-2.5-Flash/Pro). 


Minimal User Inputs: Initial Program, Makefile, Program 
Input, Result Correctness Check 

LLM Configuration:  
• Randomly choose from Flash(0.6) and Pro(0.4) LLM. 

• Temperature=0.7 and P=0.95 for controlled creativity throughout 

the optimisation exploration 
Prompts: 
• System 

• Role: “Expert CUDA GPU programmer specialising in NVIDIA V100”.

• Safety Constraints:

[x] MUST NOT CHANGE: Kernel signature, input/output types, launch mapping.

[o] ALLOWED TO OPTIMIZE: Memory patterns, shared memory, vectorization, 
thread block shape. 

…

• Success Criteria:

- Compilation: CUDA kernel must compile without errors.

- Correctness: Output must match baseline kernel for all valid input.

- Performance: 5-15% improvement in effective performance score, find best trade-off 

between compute throughput and memory throughput.

- Memory: No excess or wasted memory; avoid dynamic allocations in kernel.

- Stability: No crashes, no out-of-bounds, while maintaining numerical accuracy.


• User: evaluation metrics, error messages included to allow 
feedback in the loop


Evaluator: 
• Correctness checks: compilation, runtime, and result 

validation

• Mean execution time measurement

• NVIDIA Nsight Compute (NCU) profiling to capture 

compute and memory throughput
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Reproducibility
• https://github.com/einzigsue/KernelEvolveResult

Future Works
• Work on programs in other languages such as gFortran 
• Work on other GPUs such as H200 and MI250X
• Explore more LLMs
• Initialise from host(CPU) code to automatically translate to 

device(GPU) code


