KernelEvolve: Case Studies in Automatic CUDA N CI
Kernel Optimisation for Scientific Computing ANUSTRALIA

Yue Sun, Jorge Luis Galvez Vallejo, Li Wang, National Computational Infrastructure

LLM-Driven Code Optimisation Case Studies & Results
High-performance computing (HPC) relies heavily on e Matrix Transpose
accelerators, but optimising project-specific CUDA kernels . achieved 643 GB/s throughput
requires deep architectural expertise and significant . reward hacking"copy" strategy found for symmetric
development time. matrices, reaching 87% of cuBLAS performance
The Gap: While LLMs have been explored for code * Matrix Multiplication
generation, prior work such as Al CUDA Engineer [1], achieved 9.5 TFLOP/s
KernelBench [2], and NVIDIA’s attention kernel * reached 72% of cuBLAS performance.
optimisation [3] focus on Deep Learning kernels and often » zero slowdowns observed during evolution (figures below
reports performance slowdowns or instability. show evolution trend)
Our Solution: We introduce KernelEvolve, a workflow * N-body Solver
using the genetic algorithm approach AlphaEvolve [4] and » achieved 8.5 TFLOP/s (54% of peak FP32 performance)
its open-source implementation OpenEvolve [5] that * Use of fused multiple add (FMA) intrinsics
leverages LLMs for stable, iterative CUDA optimisation * Increase instruction level parallelism
targeting scientific workloads. * two generated programs failed to compile

* single slowdown (0.899x) at iteration 2 in generation

* |Linear Equation Solver

 achieved 13.6 TFLOP/s (87% of peak FP32 performance)
The KernelEvolve Workflow * redesigned work distribution

* applied dynamic grid sizing
* single slowdown (0.998x) observed in generation 2

It automates the optimisation loop following the AlphaEvolve
algorithm and the OpenEvolve implementation, powered by

LLMs (Gemini-2.5-Flash/Pro). = . . ® metics score sta
2.0 :
Makefile, Program Inputs, = . ® 6
Result Correctness Check b Evaluator g 10
Q.
(7))

Program
DB

~—

current 1.0 12
program
Initial Program metrics & -

error message 0.0
Controller

— [V ™ < T}

generation

System Prompts Full prompts

Increase thread block size to 32x32 for better occupancy 2.24 2.20 2.27 2.25 2.22 2.22 2.23 2.22 2.24

G e
2

re aSO n i n & Eliminate shared memory bank conflicts via padding or layout changes 1.69 1.70 1.69 1.69 1.71 1.69 1.53 223222 @ 2
g . Implement double-buffered shared memory tiling for latency hiding 1.69 1.69 1.69
p rog ram d Iﬁ Optimize memory access patterns with shared memory tiling, coalesced loads, and loop unrolling -{1.71 1.69 1.71 1.53 E @
Overlap global memory fetch with computation through prefetching and pipelining 1.69 1.69 1.69 E
Co nfi g u rat i 0 n S ﬁ L L M Transpose matrix tiles into shared memory to improve access patterns 1.69 1.53
Apply compiler hints (__launch_bounds__, __restrict__) to improve register usage and pointer aliasing 1.59
Reduce shared memory usage and tile loop iterations for efficiency 1.69 @

Simplify tiling strategy by removing double buffering and using single-buffered tiling E @

M - - I I - I g n I P M k f' I P Pre-calculate base pointers for inner loops to reduce address calculations @
I n I m a U se r n p Uts u n It I a rog ra m) a e I e y ro g ra m Maintain full occupancy by tuning block size and enabling multiple blocks per SM 1.69@ @ @ @
I .t R I.t C .t C h k Add early exit for zero tiles to avoid unnecessary computation 1.69 1.69
npu) esu OrreC neSS eC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25
iteration_found
= =
LLM Configuration:
] | |]

« Randomly choose from Flash(0.6) and Pro(0.4) LLM. Reproducibility

 Temperature=0.7 and P=0.95 for controlled creativity throughout
the optimisation exploration

Prompts: Future Works
« System

* Role: “Expert CUDA GPU programmer specialising in NVIDIA V100”.

« Safety Constraints:
[X] MUST NOT CHANGE: Kernel signature, input/output types, launch mapping.

 https://github.com/einzigsue/KernelEvolveResult

 Work on programs in other languages such as gFortran

* Work on other GPUs such as H200 and MI250X
 Explore more LLMs

[0] ALLOWED TO OPTIMIZE: Memory patterns, shared memory, vectorization, ° Initialise from hOSt(CPU) COde tO aUtomatiCa”y tranSIate tO
thread block shape. device(GPU) code

e Success Criteria:
- Compilation: CUDA kernel must compile without errors.
- Correctness: Output must match baseline kernel for all valid input.

- Performance: 5-15% improvement in effective performance score, find best trade-off Refe rences.

between compute throughput and memory throughput.
- Memory: No excess or wasted memory; avoid dynamic allocations in kernel. [1] Robert Tjarko Lange, Aaditya Prasad, Qi Sun, Maxence Faldor, Yujin Tang, and David Ha. 2025.
_ Stability: No crashes, no out-of-bounds, while maintaining numerical accuracy. The Al CUDA Engineer: Agentic CUDA Kernel Discovery, optimisation and Composition. Sakana Al.

Retrieved from https://pub.sakana.ai/static/paper.pdf
[2] Ouyang, A., Guo, S., Arora, S., Zhang, A. L., Hu, W., Ré, C., and Mirhoseini, A. 2025. KernelBench:

* User: evaluation metrICS’ error messages included to allow Can LLMs Write Efficient GPU Kernels?. In Proceedings of the Forty-second International Conference

feedback in the loop on Machine Learning (ICML ’25). Available at: https://openreview.net/forum?id=yeoN1iQT1x
_ [3] Terry Chen, Bing Xu, and Kirthi Devleker. Automating gpu kernel generation with deepseek-r1 and
Evaluator. inference-time scaling. https://developer.nvidia.com/blog/automating-gpu-kernel-generation-with-
. . : : deepseek-r1-and-inference-time-scaling/, February 2025
° CO.rreC.tneSS CheCkS' COmpllathn, runtlme’ and reSUlt [4] Novikov, A., V™ u, N., Eisenberger, M., Dupont, E., Huang, P.-S., Wagner, A. Z., Shirobokov, S.,
Va||da't|on Kozlovskii, B., Ruiz, F. J. R., Mehrabian, A., Kumar, M. P., See, A., Chaudhuri, S., Holland, G., Davies,
_) A., Nowozin, S., Kohli, P., and Balog, M. 2025. AlphaEvolve: A coding agent for scientific and
e Mean execution time measurement algorithmic discovery. arXiv preprint arXiv:2506.13131. Available at: https://arxiv.org/abs/2506.13131
: T [5] Asankhaya Sharma. 2025. OpenEvolve: an open-source evolutionary coding agent. GitHub.
y NVIDIA NSIth Compute (NCU) prOfIIIng to Capture Retrieved from https://github.com/codelion/openevolve

compute and memory throughput

