
KernelEvolve: Case Studies in Automatic CUDA
Kernel Optimisation for Scientific Computing

References:
[1] Robert Tjarko Lange, Aaditya Prasad, Qi Sun, Maxence Faldor, Yujin Tang, and David Ha. 2025.
The AI CUDA Engineer: Agentic CUDA Kernel Discovery, optimisation and Composition. Sakana AI.
Retrieved from https://pub.sakana.ai/static/paper.pdf
[2] Ouyang, A., Guo, S., Arora, S., Zhang, A. L., Hu, W., Ré, C., and Mirhoseini, A. 2025. KernelBench:
Can LLMs Write Efficient GPU Kernels?. In Proceedings of the Forty-second International Conference
on Machine Learning (ICML ’25). Available at: https://openreview.net/forum?id=yeoN1iQT1x
[3] Terry Chen, Bing Xu, and Kirthi Devleker. Automating gpu kernel generation with deepseek-r1 and
inference-time scaling. https://developer.nvidia.com/blog/automating-gpu-kernel-generation-with-
deepseek-r1-and-inference-time-scaling/, February 2025
[4] Novikov, A., V˜ u, N., Eisenberger, M., Dupont, E., Huang, P.-S., Wagner, A. Z., Shirobokov, S.,
Kozlovskii, B., Ruiz, F. J. R., Mehrabian, A., Kumar, M. P., See, A., Chaudhuri, S., Holland, G., Davies,
A., Nowozin, S., Kohli, P., and Balog, M. 2025. AlphaEvolve: A coding agent for scientific and
algorithmic discovery. arXiv preprint arXiv:2506.13131. Available at: https://arxiv.org/abs/2506.13131
[5] Asankhaya Sharma. 2025. OpenEvolve: an open-source evolutionary coding agent. GitHub.
Retrieved from https://github.com/codelion/openevolve

LLM-Driven Code Optimisation
High-performance computing (HPC) relies heavily on
accelerators, but optimising project-specific CUDA kernels
requires deep architectural expertise and significant
development time.

The Gap: While LLMs have been explored for code
generation, prior work such as AI CUDA Engineer [1],
KernelBench [2], and NVIDIA’s attention kernel
optimisation [3] focus on Deep Learning kernels and often
reports performance slowdowns or instability.

Our Solution: We introduce KernelEvolve, a workflow
using the genetic algorithm approach AlphaEvolve [4] and
its open-source implementation OpenEvolve [5] that
leverages LLMs for stable, iterative CUDA optimisation
targeting scientific workloads.

Yue Sun, Jorge Luis Galvez Vallejo, Li Wang, National Computational Infrastructure

Case Studies & Results
• Matrix Transpose

• achieved 643 GB/s throughput

• reward hacking"copy" strategy found for symmetric

matrices, reaching 87% of cuBLAS performance

• Matrix Multiplication

• achieved 9.5 TFLOP/s

• reached 72% of cuBLAS performance.

• zero slowdowns observed during evolution (figures below

show evolution trend)

• N-body Solver

• achieved 8.5 TFLOP/s (54% of peak FP32 performance)

• Use of fused multiple add (FMA) intrinsics

• Increase instruction level parallelism

• two generated programs failed to compile

• single slowdown (0.899x) at iteration 2 in generation 1

• Linear Equation Solver

• achieved 13.6 TFLOP/s (87% of peak FP32 performance)

• redesigned work distribution

• applied dynamic grid sizing

• single slowdown (0.998x) observed in generation 2

The KernelEvolve Workflow
It automates the optimisation loop following the AlphaEvolve
algorithm and the OpenEvolve implementation, powered by
LLMs (Gemini-2.5-Flash/Pro).

Minimal User Inputs: Initial Program, Makefile, Program
Input, Result Correctness Check

LLM Configuration:
• Randomly choose from Flash(0.6) and Pro(0.4) LLM.

• Temperature=0.7 and P=0.95 for controlled creativity throughout

the optimisation exploration
Prompts:
• System

• Role: “Expert CUDA GPU programmer specialising in NVIDIA V100”.

• Safety Constraints:

[x] MUST NOT CHANGE: Kernel signature, input/output types, launch mapping.

[o] ALLOWED TO OPTIMIZE: Memory patterns, shared memory, vectorization,
thread block shape.

…

• Success Criteria:

- Compilation: CUDA kernel must compile without errors.

- Correctness: Output must match baseline kernel for all valid input.

- Performance: 5-15% improvement in effective performance score, find best trade-off

between compute throughput and memory throughput.

- Memory: No excess or wasted memory; avoid dynamic allocations in kernel.

- Stability: No crashes, no out-of-bounds, while maintaining numerical accuracy.

• User: evaluation metrics, error messages included to allow
feedback in the loop

Evaluator:
• Correctness checks: compilation, runtime, and result

validation

• Mean execution time measurement

• NVIDIA Nsight Compute (NCU) profiling to capture

compute and memory throughput

Initial Program

System Prompts

Configurations

EvaluatorMakefile, Program Inputs,
Result Correctness Check

Controller

LLM

current
program

metrics &
error message

reasoning &
program dif

Full prompts

Program
DB

Reproducibility
• https://github.com/einzigsue/KernelEvolveResult

Future Works
• Work on programs in other languages such as gFortran
• Work on other GPUs such as H200 and MI250X
• Explore more LLMs
• Initialise from host(CPU) code to automatically translate to

device(GPU) code

