

KernelEvolve: Case Studies in Automatic CUDA Kernel Optimisation for Scientific Computing

Yue Sun, Jorge Luis Galvez Vallejo, Li Wang, National Computational Infrastructure

LLM-Driven Code Optimisation

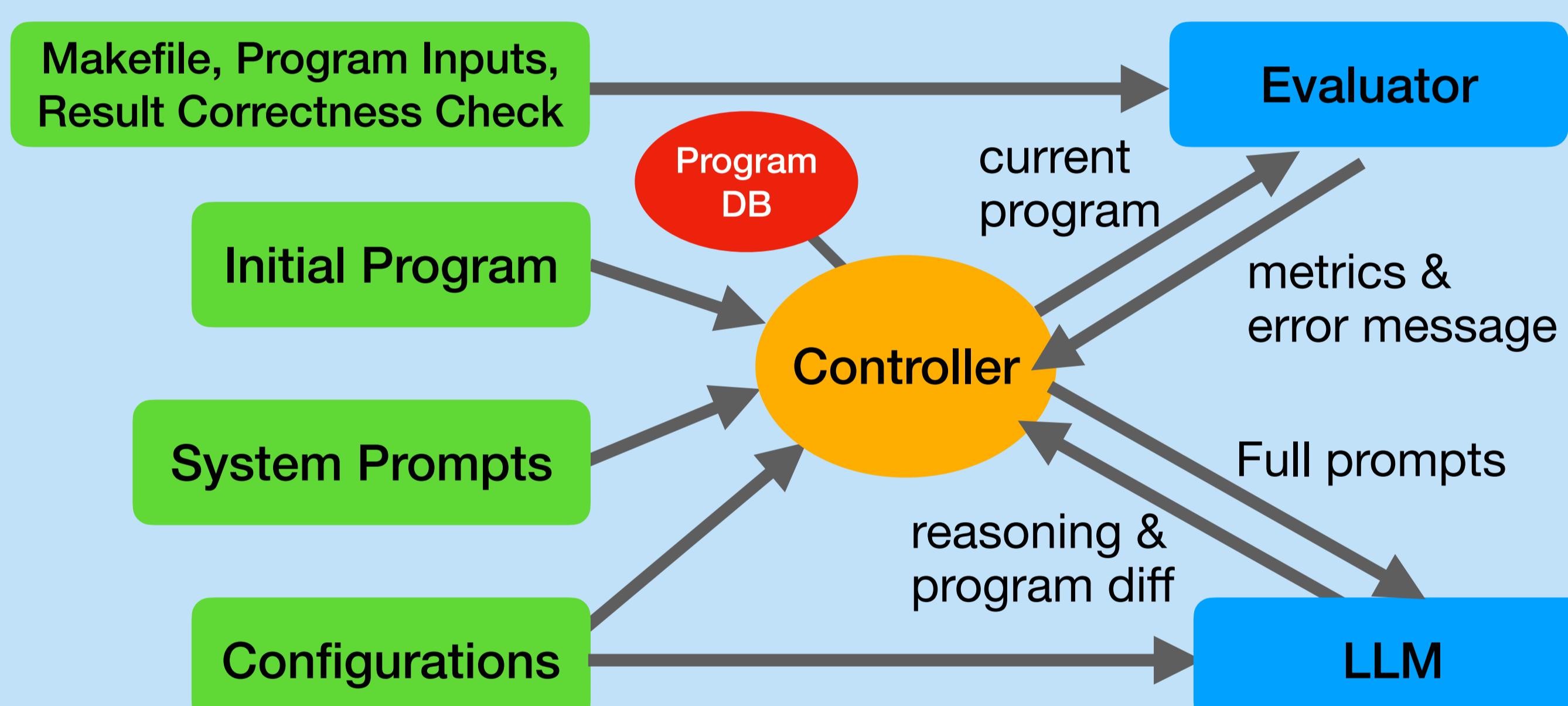
High-performance computing (HPC) relies heavily on accelerators, but optimising project-specific CUDA kernels requires deep architectural expertise and significant development time.

The Gap: While LLMs have been explored for code generation, prior work such as AI CUDA Engineer [1], KernelBench [2], and NVIDIA’s attention kernel optimisation [3] focus on Deep Learning kernels and often reports performance slowdowns or instability.

Our Solution: We introduce ***KernelEvolve***, a workflow using the genetic algorithm approach AlphaEvolve [4] and its open-source implementation OpenEvolve [5] that leverages LLMs for stable, iterative CUDA optimisation targeting scientific workloads.

The *KernelEvolve* Workflow

It automates the optimisation loop following the AlphaEvolve algorithm and the OpenEvolve implementation, powered by LLMs (Gemini-2.5-Flash/Pro).



Minimal User Inputs: Initial Program, Makefile, Program Input, Result Correctness Check

LLM Configuration:

- Randomly choose from Flash(0.6) and Pro(0.4) LLM.
- Temperature=0.7 and P=0.95 for controlled creativity throughout the optimisation exploration

Prompts:

- **System**
 - Role: “Expert CUDA GPU programmer specialising in NVIDIA V100”.
 - Safety Constraints:
 - [x] MUST NOT CHANGE: Kernel signature, input/output types, launch mapping.
 - [o] ALLOWED TO OPTIMIZE: Memory patterns, shared memory, vectorization, thread block shape.
 - ...
- Success Criteria:
 - Compilation: CUDA kernel must compile without errors.
 - Correctness: Output must match baseline kernel for all valid input.
 - Performance: 5-15% improvement in effective performance score, find best trade-off between compute throughput and memory throughput.
 - Memory: No excess or wasted memory; avoid dynamic allocations in kernel.
 - Stability: No crashes, no out-of-bounds, while maintaining numerical accuracy.

3. User experience

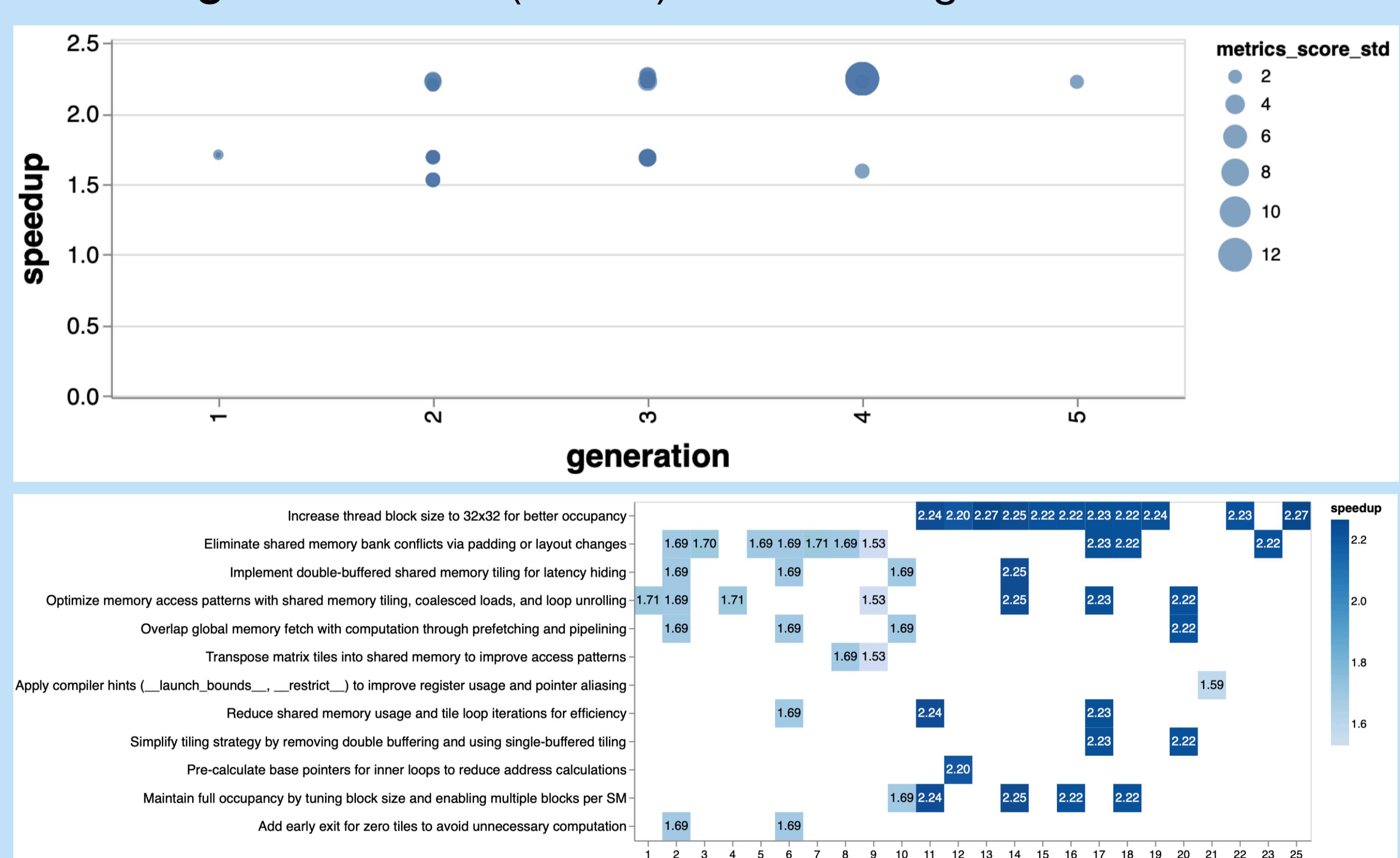
- **User:** evaluation metrics, error messages included to allow feedback in the loop

Evaluator:

- Correctness checks: compilation, runtime, and result validation
- Mean execution time measurement
- NVIDIA Nsight Compute (NCU) profiling to capture compute and memory throughput

Case Studies & Results

- Matrix Transpose
 - achieved 643 GB/s throughput
 - reward hacking "copy" strategy found for symmetric matrices, reaching 87% of cuBLAS performance
- Matrix Multiplication
 - achieved 9.5 TFLOP/s
 - reached 72% of cuBLAS performance.
 - **zero slowdowns** observed during evolution (figures below show evolution trend)
- N-body Solver
 - achieved 8.5 TFLOP/s (54% of peak FP32 performance)
 - Use of fused multiple add (FMA) intrinsics
 - Increase instruction level parallelism
 - two generated programs failed to compile
 - **single slowdown** (0.899x) at iteration 2 in generation 1
- Linear Equation Solver
 - achieved 13.6 TFLOP/s (87% of peak FP32 performance)
 - redesigned work distribution
 - applied dynamic grid sizing
 - **single slowdown** (0.998x) observed in generation 2



Reproducibility

- <https://github.com/einzigasue/KernelEvolveResult>

Future Works

- Work on programs in other languages such as gFortran
- Work on other GPUs such as H200 and MI250X
- Explore more LLMs
- Initialise from host(CPU) code to automatically translate to device(GPU) code

References:

- [1] Robert Tjarko Lange, Aaditya Prasad, Qi Sun, Maxence Faldor, Yujin Tang, and David Ha. 2025. The AI CUDA Engineer: Agentic CUDA Kernel Discovery, optimisation and Composition. Sakana AI. Retrieved from <https://pub.sakana.ai/static/paper.pdf>
- [2] Ouyang, A., Guo, S., Arora, S., Zhang, A. L., Hu, W., Ré, C., and Mirhoseini, A. 2025. KernelBench: Can LLMs Write Efficient GPU Kernels?. In Proceedings of the Forty-second International Conference on Machine Learning (ICML '25). Available at: <https://openreview.net/forum?id=yeoN1iQT1x>
- [3] Terry Chen, Bing Xu, and Kirthi Devleker. Automating gpu kernel generation with deepseek-r1 and inference-time scaling. <https://developer.nvidia.com/blog/automating-gpu-kernel-generation-with-deepseek-r1-and-inference-time-scaling/>, February 2025
- [4] Novikov, A., V~u, N., Eisenberger, M., Dupont, E., Huang, P.-S., Wagner, A. Z., Shirobokov, S., Kozlovskii, B., Ruiz, F. J. R., Mehrabian, A., Kumar, M. P., See, A., Chaudhuri, S., Holland, G., Davies, A., Nowozin, S., Kohli, P., and Balog, M. 2025. AlphaEvolve: A coding agent for scientific and algorithmic discovery. arXiv preprint arXiv:2506.13131. Available at: <https://arxiv.org/abs/2506.13131>
- [5] Asankhaya Sharma. 2025. OpenEvolve: an open-source evolutionary coding agent. GitHub. Retrieved from <https://github.com/codalion/openevolve>