Evaluating the performance of distributed FFT over multiple vendor GPUs

Y. ASAHI', T. Morvany!, T. Padioleau?, J. Bigot! t “I @ - ﬂ>
Maison de la Simulation, Université Paris-Saclay, UVSQ, CNRS, CEA NS \—

In this work, we demonstrate a performance portable distributed FFT implementation on top of the Kokkos performance portable
ecosystem. The performance portability of our distributed FFT library comes for free as part of the Kokkos ecosystem. Instead of
spending time to implement across multiple backends, we focus on developing the unique features such as the batched capability,
collective communication layer (e.g. NCCL, RCCL, and oneCCL) and an interface to third party distributed FFT libraries. Our library

supports slab and pencil domain decompositions with a batched capability. We have demonstrated reasonable performance on AMD,
NVIDIA and Intel GPUs.

¥ Distributed FFT on exascale systems

Library name |Language CPU|NVIDIA GPUs/AMD GPUsj|Intel GPUs ; ;

2Decomp&FFT [Fortran/OpenACC X IX Kokkos-FFT distributed

cuDecomp C++/CUDA X

cuFFTMp C++/CUDA X X .

heFFTe C++/CUDA/HIP/SYCLIX X X X Shared Plan Slab/Pencil Plan Tpl Plan
Kokkos-FFT [1]|C++/Kokkos X X X X

Comm libs

NooL] [Fear]

Kokkos libs

Kokkos-FFT

m Most existing libraries are highly vendor locked
m Distributed FFT libraries: FFT + Communication + Transpose kernels

m heFFTe offers performance portability by managing distinct backend specific
backend

m Distributed FFT interface on top of the Kokkos ecosystem [2]
m Benefit from Kokkos: Performance portability, and consistent build system
m Simpler to use in Kokkos codes

¥ KokkosFFT::Distributed features and API

FFT libs
| |

[1] Y. Asahi, et al., JOSS, 2025
[2] Y. Asahi, et al., P3BHPC @SC25

#include <mpi.h>
#include <Kokkos_Core.hpp>

#include <Kokkos_Core.hpp>
#include <Kokkos_Complex.hpp>
#include <Kokkos_Random.hpp>
#include <KokkosFFT.hpp>

Distributed

m 1D, 2D, 3D standard and real Fast Fourier Transforms over 1D to 7D Views Shared

(can be batched)
m Simple interfaces like KokkosFFT::Plan & execute APIs
m View is all we need: No need to access the complicated FFT APIs
m Compile time or runtime errors for invalid usage (much safer)
= Supporting multiple CPU and GPU backends
s SERIAL, THREADS, OPENMP, CUDA, HIP and SYCL
m FFT libraries dedicated to Kokkos backends are automatically enabled
m Parallelization (Seamless integration of Shared, Slab, Pencil decompositions)
m Device aware MPI (All2All) ,
m Collective communication interface: NCCL, RCCL and oneCCL L Plan plan(exec, u_0, u_hat_1, axes_type{0, 1}, topod, topol, MPL_COMM_WORLD);
m Third Party Library (TPL) support

#include <Kokkos_Complex.hpp>
#include <Kokkos_Random.hpp>
#include <KokkosFFT_Distributed.hpp>
using execution_space = Kokkos::DefaultExecutionSpace;
using axes_type = KokkosFFT::axes_type<2>;
using ComplexView2DType =

Kokkos: :View<Kokkos: :complex<T>x%, execution_space>;

using execution_space = Kokkos::DefaultExecutionSpace;
using extents_type = std::array<std::size_t, 2>;
using axes_type = KokkosFFT::axes_type<2>;
using ComplexView2DType =
int main(int argc, charx argv[]) { Kokkos: :View<Kokkos::complex<T>*%x, execution_space>;
{
int main(int argc, charx argv[]) {
::MPI_Init(&argc, &argv);
int rank, nprocs;
: :MPI_Comm_rank(MPI_COMM_WORLD, &rank);
: :MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
// Plan creation {
Plan plan(exec, u, u_hat, KokkosFFT::Direction::forward,

axes_type{0, 1});

Kokkos: :ScopeGuard guard(argc, argv);
execution_space exec;
int n@ = 8, nl = 8;

ComplexView2DType u("u", n@, nl1), u_hat("u_hat"™, n@, nl);

Kokkos: :ScopeGuard guard(argc, argv);

execution_space exec;

int n@ = 8, nl = 8;

extents_type topo@ {1, std::size_t(nprocs)}, topol {std::size_t(nprocs), 1};
ComplexView2DType u_0("u_0", n@, nl/nprocs), u_hat_1(“u_hat_1", n@/nprocs, nl);

// Execute the plan
execute(plan, u, u_hat);

// Execute the plan
execute(plan, u_0, u_hat_1, KokkosFFT::Direction::forward);

m Vendor native distributed FFT support: cuFFTMp, , A MPLFinalize();
b
| | |
|
I Benchmark: solving 3D Navier-Stokes equation
] template <typename ViewType> . Non_batched template <typename ViewType> | batChed
Algorithm 1 Computation of the RHS 3D NS equation void ths(const VieTypel h const VieTypes vk void phs(canst VieTypet ik, const VievTypes dukdt) I
u é)ll const ViewType& dvkdt, const ViewType& dwkdt) { dealias(uk, m_grid.m_alias_mask);
Apply dealiasing filter before inverse transform
1: IIlplltZ Uy, Olltpllt: a—tk = o (11 . V)u — —Vp + VV2u, ééalggss(/uk?am_gls”id?m_ali:s_m:sﬁ)? SR e // Calculate velocity derivatives in Fourier space
9. fOI’ all AH gr1d pOil’ltS (kx> kya kz) dO at gggﬁgzg\\’c:ﬁ: m:g::igm::ﬁgzzmgzlég: derivative(uk, m_dukdx, m_dukdy, m_dukdz);
3: DealiaSing: Apply numerical ﬁlters on llk V u = O’ // Calculate velocity derivatives in Fourier space é>/<ecI:3)c/2I(Firi_ggnfouaftmisrlgai:ié\c/isio;?:E:i&w;ﬁg?
. derivative(uk, dukdx, dukdy, dukdz); Xecu lan, dukdx, dudx, Di ion::backward);
4: Derivative: Compute ikyuy, ikyuy, and ikzug d:&v::ﬁ;vggvk, m_dvkdx, m_dvkdy., m:dvkdz;; iniuiiﬁiﬂzﬁéﬂ n_dukdy, m_dudy. B:@EZEE:@SE::b:Ekw:Ed;;
5. II’IVCI'SC FFT COHVGI’t Uk, ikxllk, ikyllk and ikZUk il’ltO Uk, derivative(wk, m_dwkdx, m_dwkdy, m_dwkdz); execute(xm_plan, m_dukdz, m_dudz, Direction::backward);
Wau // Inverse FFT to get derivatives in real space // Calculate nonlinear advection terms in real space
ox> oy A4 Gz xecinstrm plan, uk, aLl, Dlrectionsbackar povection(e-u, e, n.dudy, o)
6: Nonlinear advection: Compute u - Vu in real Space execute(*nglan: wk: m:w: Direction: ;backward); // FFT of nonlinear terms (stored in dukdt)
.) . execute(xm_plan, m_dukdx, m_dudx, Direction::backward); execute(xm_plan, m_u, dukdt, Direction::forward);
7. Forward FFT: Convert u - Vu into Fourier representation execute(xm_plan, m_dukdy, m_dudy, Direction::backward);
e ;) execute(xm_plan, m_dukdz, m_dudz, Direction::backward); dealias(dukdt, m_grid.m_alias_mask);
followed by deahasu’lg execute(xm_plan, m_dvkdx, m_dvdx, Direction::backward); // Calculate viscous diffusion term in Fourier space
] 9 : . execute(*m_plan, m_dvkdy, m_dvdy, Direction::backward); // And combine terms (stored in dukdt)
8: Add viscous term: Add VV u computed 1n Fourler Space execute(xm_plan, m_dvkdz, m_dvdz, Direction::backward); combine(dukdt, uk);
: : . u execute(xm_plan, m_dwkdx, m_dwdx, Direction::backward); projection(m_grid, dukdt);
% Projection: subtract the pressure gradient from 5 e, i o B er) }
S — [Coleutate nonuinear sdvection terns in real space = In batched implementation, (u, v, w)
Testbed description m_dvdx, m_dvdy, m_dvdz, m_dwdx, m_dwdy, m_dwdz); IS stored in a single 4D View
System Adastra Wisteria Aurora éﬁeiﬁle‘fimfﬁ'{éii‘eﬁiufeéﬂidiftﬁiiﬂciioﬂ?:k?%)rward;; = Making a room for further
xecute (* lan, m_v, dvkdt, Di tion::forward); . . .
Processor MI250X A100 PVC execute (s plan, mw. dwkdt. Direction::forward): parallelization and potentially
Penk B [B/e] mer ocemon 606 e = deotiastauct, norid-n atias nash): optimization
€ / /'S per pI'OCQSSOI' dealias(dwkdt: m:grid:m:alias:mask); _ . .
Intranode bandwidth [GB/s] | 200 (Infinity Fabric) | 300 (NVLink) | 28 (Xe-Links) L lerlote ioeoe Sifucion torm 3 Fourier s = Atleast useful for delta-F gyrokinetic
Internode bandwidth [GB/s} 25 25 50 Lol ot i o S, simulations which rely on 2D
Compilers rocm 6.3.3 CUDA/12.0.0 | Intel LLVM/2025.2.0 L bre: | i batched distributed FFTs
roject the RHS onto the divergence-free space
MPI Cray MPICH 8.1.3 | OpenMPI 4.6.1 MPICH 4.1) projection(m_grid, dukdt, dvkdt, dwkdt);
Strong scaling of NS code on AMD, NVIDIA and Intel GPUs (slab decomposition) Detailed comparison with third party library (cuFFTMp MPI backend)
(a) MI250X (b) A100 (d) PVC - i
 Meseured 210 o —— Mesred # MPI |Architecture All2All Unpack |Pack FFT Transpose |[Normalize
N T e \ 16 [MI250X 2.5869005 |0.6046888 |0.5407781 |0.3771451 |0.1599698 |0.0410012
N ~ 2x10"

3 10' \\\ \\\\ | . 16 A100 1.4119186 0.1384448 |0.1340588 |0.1574669 [0.0641185 |0.0378279
A \\‘ z - \\ 24 PVC 2.1882714 0.0745944 |10.0755608 [0.1367731 |0.0844676 |0.0279205
: g : ~ _

EJ \ e E ~ 16 |A100 (cuFFTMp) [5.6404234 (cufftXtExecDescriptor) + 0.0615868 (deep_copy) [0.0398363
AN 32 [MI250X 1.6854427 |0.2153435 |0.2045072 |0.1917983 [0.0685456 |0.0208990
\\ | 32 A100 1.3671452 0.0736637 |0.0692853 |0.0842405 [0.0321864 |0.0192575
6% 10
48 PVC 1.4499639 0.0367731 |0.0374491 |0.0675543 [0.0419294 |0.0116997
16 o o2 hUs 64 16 32 64 2 1 96 32 A100 (CUFFTMp) 6.2026824 (CufftXtExeCDescriptor) + 0.0279685 (deep_CODY) 0.0189584
umber of processes (GPUs Number of processes (GPUs) Number of processes (GPUs)

. - N o 64 [MI250X 0.9532557 |0.0728108 |0.0686664 |0.0985339 |0.0322849 (0.0107661

100 3 100 —fr— AllRAll —&3— Transpose 100
i ‘Ii’\;izl:ililnpack : ;r:sfxzzszcc v Itéck"Llllpack ——— Normalize ! li&r#ifililﬁlflfgf—fu 64 A1 OO 1-0743411 0.031 8285 0.0321 609 0.0440656 0.01 54079 0.0098744
0 o o T 96 |PVC 1.0724439 |0.0180935 |0.0177808 |0.0341698 [0.0214499 |0.0047145

P P T 2 64 |A100 (cuUFFTMp) |6.7232816 (cufftXtExecDescriptor) + 0.0143585 (deep_copy) [0.0093825

D60 2 60 2 60

; ; o e = Keep MPI tasks simple. All the complexities are handled on GPUs.

" " = cUFFTMp does not scale at all. Need further investigation

. o L = Roughly the same performance on MI250X and A100 (Internode bandwidth is 25 GB/s

. | — on these machines)
ol 1o z g o=+ o' 5 —— & m With 64 (or 96) MPI processes, AlI2All is a major bottleneck
Number of GPUs Number of GPUs Number of processes

- P> Performance portable implementation of distributed FFTs: running efficiently on MI1250X, A100 and PVC
¥ Conclusions : : g effiiently
P> Batched capability and vendor native distributed FFT library supports

