
Distributed FFT on exascale systems

KokkosFFT::Distributed features and API

Conclusions

Benchmark: solving 3D Navier-Stokes equation

Batched capability and vendor native distributed FFT library supports

Library name Language CPU NVIDIA GPUs AMD GPUs Intel GPUs
2Decomp&FFT Fortran/OpenACC X X
cuDecomp C++/CUDA X
cuFFTMp C++/CUDA X X
heFFTe C++/CUDA/HIP/SYCL X X X X
Kokkos-FFT [1] C++/Kokkos X X X X

Evaluating the performance of distributed FFT over multiple vendor GPUs
Y. ASAHI1, T. Morvany1, T. Padioleau1, J. Bigot1

Maison de la Simulation, Université Paris-Saclay, UVSQ, CNRS, CEA1

 In this work, we demonstrate a performance portable distributed FFT implementation on top of the Kokkos performance portable
ecosystem. The performance portability of our distributed FFT library comes for free as part of the Kokkos ecosystem. Instead of
spending time to implement across multiple backends, we focus on developing the unique features such as the batched capability,
collective communication layer (e.g. NCCL, RCCL, and oneCCL) and an interface to third party distributed FFT libraries. Our library
supports slab and pencil domain decompositions with a batched capability. We have demonstrated reasonable performance on AMD,
NVIDIA and Intel GPUs.

 Kokkos-FFT distributed

 Shared Plan Slab/Pencil Plan

Kokkos

Kokkos-FFT

 Tpl Plan

cuFFTMp

MPI

NCCL RCCL

oneCCL

Comm libs FFT libsKokkos libs■Most existing libraries are highly vendor locked
■ Distributed FFT libraries: FFT + Communication + Transpose kernels
■ heFFTe offers performance portability by managing distinct backend specific

backend
■Distributed FFT interface on top of the Kokkos ecosystem [2]
■ Benefit from Kokkos: Performance portability, and consistent build system
■ Simpler to use in Kokkos codes

■ 1D, 2D, 3D standard and real Fast Fourier Transforms over 1D to 7D Views
(can be batched)

■ Simple interfaces like KokkosFFT::Plan & execute APIs
■ View is all we need: No need to access the complicated FFT APIs
■ Compile time or runtime errors for invalid usage (much safer)

■ Supporting multiple CPU and GPU backends
■ SERIAL, THREADS, OPENMP, CUDA, HIP and SYCL
■ FFT libraries dedicated to Kokkos backends are automatically enabled

■ Parallelization (Seamless integration of Shared, Slab, Pencil decompositions)
■ Device aware MPI (All2All)
■ Collective communication interface: NCCL, RCCL and oneCCL

■ Third Party Library (TPL) support
■ Vendor native distributed FFT support: cuFFTMp, rocfftMPI, cuDecomp, …

#include <Kokkos_Core.hpp>
#include <Kokkos_Complex.hpp>
#include <Kokkos_Random.hpp>
#include <KokkosFFT.hpp>

using execution_space = Kokkos::DefaultExecutionSpace;
using axes_type = KokkosFFT::axes_type<2>;
using ComplexView2DType =
 Kokkos::View<Kokkos::complex<T>**, execution_space>;

int main(int argc, char* argv[]) {
 {
 Kokkos::ScopeGuard guard(argc, argv);
 execution_space exec;
 int n0 = 8, n1 = 8;
 ComplexView2DType u("u", n0, n1), u_hat("u_hat", n0, n1);

 // Plan creation
 Plan plan(exec, u, u_hat, KokkosFFT::Direction::forward,
 axes_type{0, 1});

 // Execute the plan
 execute(plan, u, u_hat);
 }
};

#include <mpi.h>
#include <Kokkos_Core.hpp>
#include <Kokkos_Complex.hpp>
#include <Kokkos_Random.hpp>
#include <KokkosFFT_Distributed.hpp>

using execution_space = Kokkos::DefaultExecutionSpace;
using extents_type = std::array<std::size_t, 2>;
using axes_type = KokkosFFT::axes_type<2>;
using ComplexView2DType =
 Kokkos::View<Kokkos::complex<T>**, execution_space>;

int main(int argc, char* argv[]) {
 ::MPI_Init(&argc, &argv);
 int rank, nprocs;
 ::MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 ::MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
 {
 Kokkos::ScopeGuard guard(argc, argv);
 execution_space exec;
 int n0 = 8, n1 = 8;
 extents_type topo0 {1, std::size_t(nprocs)}, topo1 {std::size_t(nprocs), 1};
 ComplexView2DType u_0("u_0", n0, n1/nprocs), u_hat_1(“u_hat_1", n0/nprocs, n1);

 // Plan creation
 Plan plan(exec, u_0, u_hat_1, axes_type{0, 1}, topo0, topo1, MPI_COMM_WORLD);

 // Execute the plan
 execute(plan, u_0, u_hat_1, KokkosFFT::Direction::forward);
 }
 ::MPI_Finalize();
};

Shared Distributed

template <typename ViewType>
void rhs(const ViewType& uk, const ViewType& vk,
 const ViewType& wk, const ViewType& dukdt,
 const ViewType& dvkdt, const ViewType& dwkdt) {
 // Apply dealiasing filter before inverse transform
 dealias(uk, m_grid.m_alias_mask);
 dealias(vk, m_grid.m_alias_mask);
 dealias(wk, m_grid.m_alias_mask);

 // Calculate velocity derivatives in Fourier space
 derivative(uk, m_dukdx, m_dukdy, m_dukdz);
 derivative(vk, m_dvkdx, m_dvkdy, m_dvkdz);
 derivative(wk, m_dwkdx, m_dwkdy, m_dwkdz);

 // Inverse FFT to get derivatives in real space
 execute(*m_plan, uk, m_u, Direction::backward);
 execute(*m_plan, vk, m_v, Direction::backward);
 execute(*m_plan, wk, m_w, Direction::backward);
 execute(*m_plan, m_dukdx, m_dudx, Direction::backward);
 execute(*m_plan, m_dukdy, m_dudy, Direction::backward);
 execute(*m_plan, m_dukdz, m_dudz, Direction::backward);
 execute(*m_plan, m_dvkdx, m_dvdx, Direction::backward);
 execute(*m_plan, m_dvkdy, m_dvdy, Direction::backward);
 execute(*m_plan, m_dvkdz, m_dvdz, Direction::backward);
 execute(*m_plan, m_dwkdx, m_dwdx, Direction::backward);
 execute(*m_plan, m_dwkdy, m_dwdy, Direction::backward);
 execute(*m_plan, m_dwkdz, m_dwdz, Direction::backward);

 // Calculate nonlinear advection terms in real space
 advection(m_u, m_v, m_w, m_dudx, m_dudy, m_dudz,
 m_dvdx, m_dvdy, m_dvdz, m_dwdx, m_dwdy, m_dwdz);

 // FFT of nonlinear terms (stored in dukdt)
 execute(*m_plan, m_u, dukdt, Direction::forward);
 execute(*m_plan, m_v, dvkdt, Direction::forward);
 execute(*m_plan, m_w, dwkdt, Direction::forward);

 dealias(dukdt, m_grid.m_alias_mask);
 dealias(dvkdt, m_grid.m_alias_mask);
 dealias(dwkdt, m_grid.m_alias_mask);

 // Calculate viscous diffusion term in Fourier space
 // And combine terms (stored in dukdt)
 combine(dukdt, dvkdt, dwkdt, uk, vk, wk);

 // Project the RHS onto the divergence-free space
 projection(m_grid, dukdt, dvkdt, dwkdt);
}

template <typename ViewType>
void rhs(const ViewType& uk, const ViewType& dukdt) {
 // Apply dealiasing filter before inverse transform
 dealias(uk, m_grid.m_alias_mask);

 // Calculate velocity derivatives in Fourier space
 derivative(uk, m_dukdx, m_dukdy, m_dukdz);

 // Inverse FFT to get derivatives in real space
 execute(*m_plan, uk, m_u, Direction::backward);
 execute(*m_plan, m_dukdx, m_dudx, Direction::backward);
 execute(*m_plan, m_dukdy, m_dudy, Direction::backward);
 execute(*m_plan, m_dukdz, m_dudz, Direction::backward);

 // Calculate nonlinear advection terms in real space
 advection(m_u, m_dudx, m_dudy, m_dudz);

 // FFT of nonlinear terms (stored in dukdt)
 execute(*m_plan, m_u, dukdt, Direction::forward);

 dealias(dukdt, m_grid.m_alias_mask);
 // Calculate viscous diffusion term in Fourier space
 // And combine terms (stored in dukdt)
 combine(dukdt, uk);
 projection(m_grid, dukdt);
}

Non-batched batched

■ In batched implementation, (u, v, w)
is stored in a single 4D View

■Making a room for further
parallelization and potentially
optimization

■ At least useful for delta-F gyrokinetic
simulations which rely on 2D
batched distributed FFTs

MPI Architecture All2All Unpack Pack FFT Transpose Normalize
16 MI250X 2.5869005 0.6046888 0.5407781 0.3771451 0.1599698 0.0410012
16 A100 1.4119186 0.1384448 0.1340588 0.1574669 0.0641185 0.0378279
24 PVC 2.1882714 0.0745944 0.0755608 0.1367731 0.0844676 0.0279205
16 A100 (cuFFTMp) 5.6404234 (cufftXtExecDescriptor) + 0.0615868 (deep_copy) 0.0398363
32 MI250X 1.6854427 0.2153435 0.2045072 0.1917983 0.0685456 0.0208990
32 A100 1.3671452 0.0736637 0.0692853 0.0842405 0.0321864 0.0192575
48 PVC 1.4499639 0.0367731 0.0374491 0.0675543 0.0419294 0.0116997
32 A100 (cuFFTMp) 6.2026824 (cufftXtExecDescriptor) + 0.0279685 (deep_copy) 0.0189584
64 MI250X 0.9532557 0.0728108 0.0686664 0.0985339 0.0322849 0.0107661
64 A100 1.0743411 0.0318285 0.0321609 0.0440656 0.0154079 0.0098744
96 PVC 1.0724439 0.0180935 0.0177808 0.0341698 0.0214499 0.0047145
64 A100 (cuFFTMp) 6.7232816 (cufftXtExecDescriptor) + 0.0143585 (deep_copy) 0.0093825

Strong scaling of NS code on AMD, NVIDIA and Intel GPUs (slab decomposition) Detailed comparison with third party library (cuFFTMp MPI backend)

■ Keep MPI tasks simple. All the complexities are handled on GPUs.
■ cuFFTMp does not scale at all. Need further investigation
■Roughly the same performance on MI250X and A100 (Internode bandwidth is 25 GB/s

on these machines)
■With 64 (or 96) MPI processes, All2All is a major bottleneck

[1] Y. Asahi, et al., JOSS, 2025
[2] Y. Asahi, et al., P3HPC @SC25

Testbed description

Performance portable implementation of distributed FFTs: running efficiently on MI250X, A100 and PVC

3D NS equation

