
Performance Evaluation of the ES-SC Preconditioned CG
Method on GPU

Yuya Kudo1, Yuki Satake1, Takeshi Fukaya1, Takeshi Iwashita2

1: Hokkaido University 2: Kyoto University

SCA/HPCAsia 2026, January 27, 2026

• In scientific applications, systems of linear equations are often solved.
ü In particular, some problems (such as time-dependent analysis) require solving a

sequence of linear systems with the same coefficient matrix.
• For such problems, Iwashita et al. proposed the Error vector Sampling-based

Subspace Correction (ES-SC) preconditioner [1].
ü ES-SC uses information obtained from the initial solve to accelerate

subsequent solutions.
ü On CPUs, it has been confirmed that ES-SC is an efficient preconditioner for

the CG method.

l Contributions
• We redesigned the ES-SC preconditioned CG (ES-SC-CG) method for

GPUs.
ü We combined the ES-SC and SDAINV [2] preconditioners.

• We evaluated the ES-SC-SDAINV-CG method on a GPU.
ü To conduct a more detailed evaluation, we also evaluated an approach that

combines ES-SC with an IC-based preconditioned CG (ES-SC-MCIC-CG),
as in previous work.

1. Introduction
l Experimental setup
• Platform: NVIDIA H100 GPU (Hokkaido University)
• Test data: seven SPD matrices
• Methods compared:

ü Baseline: SDAINV-CG (without ES-SC)
ü ES-SC-SDAINV-CG
ü ES-SC-MCIC-CG

l Results
1. Total number of iterations and computation time
• The iteration ratios (star markers) are below 1.0 for all tested matrices, showing

that ES-SC combined with SDAINV consistently reduces iterations.
• The total computation time is reduced for 5/7 matrices.
• When 𝒌𝒕 increases, ES-SC-SDAINV-CG may become faster in terms of

total computation time because the preprocessing construction cost (the
hatching area) becomes relatively smaller.

Note: The total computation time consists of the time required for building the preconditioner
on a CPU and the time required for solving 𝑘! systems on a GPU.
2. Breakdown of computation time per iteration for 𝒌 = 𝟐
• If the computational cost of the SC preconditioning is low and the number of

iterations is sufficiently reduced, the total computation time will be shorter.
• Conversely, if the computational cost of the SC preconditioning is high and the

number of iterations is not reduced enough, the total computation time increases.

4. Numerical experiments

We solve a sequence of linear systems:
𝐴𝒙(#) = 𝒃(#)	 𝑘 = 1,2, … , 𝑘%

• 𝐴 ∈ ℝ&×& is a large, sparse, and symmetric positive-definite (SPD) matrix.
• 𝒙 # , 𝒃(#) ∈ ℝ& are the solution vector and right-hand side vector at step 𝑘,

respectively.
Note: We assume that 𝒃(#) depends on 𝒙(#()).
→ Therefore, these systems must be solved sequentially.

2. Problem Settings

lOverview of the ES-SC-CG method
• Initial solve (𝑘 = 1)
Step1: Sample approximate solution vectors during the iterative process.
Step2: Compute error vectors.

ü Subtract each sampled approximation from the converged solution.
Step3: Construct an auxiliary matrix 𝐵 from the error vectors.
• Subsequent solves (𝑘 ≥ 2)
The following preconditioner is used for preconditioning in the CG method:

𝑀*
() 	 = 	 𝑀() 	 + 	 𝐵 𝐵+𝐴𝐵 ()𝐵+

→ Accelerate subsequent solves.
lGPU Implementation of the ES-SC-CG Method
• It is important to choose a standard preconditioner for use with ES-SC.

→ We combined ES-SC and SDAINV.
• We implemented our solver using CUDA.
• Construction of the MCIC and SDAINV preconditioner matrices is performed on

the CPU.
• To efficiently execute SpMV operations, we used Sliced-ELL [3] as the sparse

matrix storage format.
• We used cuBLAS and cuSOLVER for inner products and ES-SC–specific computations

(e.g., auxiliary matrix construction); all other computations are implemented using
our own CUDA kernels.

3. The ES-SC-CG method for GPUs

SC preconditionerstandard preconditioner

Standard
preconditioner

Building the
preconditioner

Features of
calculation

GPU-
friendliness

MCIC Low cost Forward and backward
substitution △

SDAINV High cost
Sparse matrix-vector

multiplication
(SpMV)

◎

Parallelized
incomplete Cholesky
(IC) preconditioner

be
tt

er

best

(b) Slowdown case: G3_circuit

×0.885
×0.953

(a) Speedup case: bone010

×(iteration ratio)

×0.246

×0.190

Synchronization count is
large due to forward-
backward substitution

l Summary
We implemented ES-SC-SDAINV-CG for a GPU and confirmed its effectiveness.

ü Number of iterations: reduced for all test matrices
ü Computation time: reduced for five test matrices

l Future work
The validity has been confirmed on CPUs for a sequence of linear systems with the
same asymmetric matrix [4].
→ Redesign for GPUs.

5. Conclusion

1.Takeshi Iwashita et al. Convergence acceleration of preconditioned conjugate gradient solver based on error vector sampling for a
sequence of linear systems. Numerical Linear Algebra with Applications 30 (2023), e2512

2.Kengo Suzuki et al. A New AINV Preconditioner for the CG Method in Hybrid CPU-GPU Computing Environment. Journal of
Information Processing 30 (2022), 755–765

3.Alexander Monakov et al. Automatically tuning sparse matrix-vector multiplication for GPU architectures. Proceedings of the 5th
International Conference on High Performance Embedded Architectures and Compilers (HiPEAC ’10) (2010), 111-125

4. Hirotoshi Tamori et al. Subspace Correction Preconditioning for Solving a Sequence of Asymmetric Linear Systems Using the Bi-CGSTAB
Method, Journal of Information Processing 31 (2023), Pages 875-884

References

Overall, it tends to be fast.
It is dominant.

