Performance Comparison of Kokkos-Based and

CUDA/OpenACC Lattice Boltzmann Solvers

Jipeng Su Takashi Shimokawabe Ziheng Yuan

The University of Tokyo The University of Tokyo The University of Tokyo

1. Introduction

People see a mixture of CPUs, GPUs, and specialized
accelerators, and each vendor provides its own programming
ecosystem, such as CUDA, OpenMP, or vendor-specific
toolchains. As a result, scientific codes written for one platform
often require significant rewriting to run efficiently on another
system. This creates a serious sustainability problem for long-
lived simulation codes.

This motivates the need for a performance-portable
programming model, and Kokkos is designed to satisfy this
requirement.

2. Lattice Boltzmann method

Lattice Boltzmann method is a computational method for
simulating the fluid dynamics. Streaming and collision processes
from the fluid particles are calculated via distribution functions.

f.(x + e;At, t + At) = (%, t) + Qi (f(%,)

23 13 29
1 e
Qi(f(x,t)) = ';(fi(X» D-f (%,) A ‘3/ E
1

o 16} 67| 25 18
Each iteration consists of two steps: [ol
» Collision: local relaxation toward 7 1 "1
equilibrium | ‘ y
» Streaming: propagation to neighboring ® /L e
lattice nodes S

19 14 20
From a performance perspective:

* Collision is compute-bound D5Q,, model
» Streaming is memory-access intensive

3. Kokkos

Kokkos aims to achieve performance portability through several
key ideas.

First, it supports multiple processors from different vendors.
Backends like CUDA, OpenMP or Serial can be enabled for
different targets.

Second, it provides an intuitive abstraction for parallelism and
data arrangement. A typical array used by Kokkos is called View,
which can be used to store one or more dimensions.

Third, it allows layout optimization depending on the target
hardware.

4. Method

4.1 MPl communications IMP'
Wit
* In the 3D LBM model:
GPU nodes share the halo layer of x-y
plane through MPl communication . 7
MPI
}
 This allows to exchange the boundary / /
information
to update the boundary values in
each GPU node 1

MPI

4.2 Kokkos 1D and 3D cases

* For Kokkos 1D View case, Kokkos RangePolicy is used, and
the index will be computed manually.

* For Kokkos 3D View case, Kokkos MDRangePolicy is used,
and it will automatically support the multi-dimensional

computation

5. Experiment Result

LBM Performance Comparison (MLUPS) Streaming-collision kernel runtime (lower is better)

=
N
1

15391

10.681

15000 -

[
o
L

12500 -
¥ 10000 -
=
S 7500

5000 -

Kernel time (ms)

2500 -

o N Ra (o)) (00)
i 1 1 1

0_

18

DA cC yght \e
cJ Ope“A\(o\d@S 3p-R\3 (OKKOS 3D\

KoKKO® 3

80 - _
B Total time (s)

222222 .)
MPI waitall time (s)

70

60

Generally speaking, Kokkos 1D
shows best performance which can £,
catch up with CUDA. But both
multi-dimensional kokkos version

show drawbacks here on the

0 -

CUDA OpenACC Kokkos 3D Kokkos 3D Kokkos 1D

performance for the 3D LBM simulation.

communication time is similar across all implementations.

This indicates that the performance differences mainly come from the
streaming—collision kernel, rather than MPI| overhead.

Therefore, kernel-level memory efficiency is the dominant factor.

HPC ASIA 2026

