Revisiting MMPDE algorithm with Python:

A possible direction into parallel algorithm of MMPDE

Henokh Lugo Hariyanto and Arif Wicaksono Septyanto
Institut Teknologi Kalimantan

Introduction

- With increasing in a trend of muticore CPUs, demands to develop parallel software is
high [3]

- Solving PDE with initial value that contains jump is very problematic with uniform
mesh. In here we will demonstrate how to solve it using an adaptive mesh.

- Adaptive mesh categorized into three types: r-adaptive mesh, h-adaptive mesh, and p-
adaptive mesh. The moving mesh PDE (MMPDE) algorithm is categorized as r-adaptive
mesh.

- One of the most recent work to parallelize MMPDE [2] is only shown for the mesh
generation, without the consideration to couple it for solving PDE

Problem definition

MMPDE algorithm is tested to the following a toy problem Burger's equation with an
initial values that contains jump

’U,2
Ut = EUgy — 7 w)

€ (0,1),t >0

{ u(0,t) =1; wu(l,t)=0 (1)
lu(w’ 0) — 0.1exp{=2%22} + 0.5 exp{ L2} + exp{ 21230
expq —233-5 exp{ —%t0 5 } exp{ ==L 375
The above equation has an exact solutions
(o) = 0.1 exp{ —:13+02.g€—4.95t + 0.5 exp{ =20 5 075} | exp{ —:13+0 375
exp{ 205405t} | oypf 21050 75t - exp{ =22 375

Methods

The idea of MMPDE is to find the transformation function from computational
coordinates £ to physical coordinates x, such that it satisfied the gradient flow of the
following functional.

1 b 1 d¢\ ?
5/a o(z,t) (5) o

where p(x,1) is the mesh density definedinameshZ, ;=1 =a < xy < ...
= b for a specific time t as

Iig] -

< TN

[p@d=..= [pla)a

We can writlemﬁéitly the gradient flow of I[¢]
% Pl

ot T &

substitute 01 /0¢ from the steady state of I|£], we have
¢

5w (p0)

where P is a positive-definite differential operator which can be chosen with
considerate flexbility, and 7 > 0 is a user specified parameter for adjusting the
response time of mesh movement to change in p(z, t).

P 0

T Ox

1 O
p Ox

(2)

In Fig. 1, we showed the program flow how to implement MMPDE. This flowchart is
an adaptation of [1] with more detail.

0 U (Updata iteration](

L n+—n+1l

n+1 , :L.'n.—l—l

Calculate new physical mesh " No

Y |
, 0 0 Calculate Calculate new Linear n+l _ ..m
Set numerical] u’, T density computational mterpolatmn Is |x | x| < tol or
parameters for meahJ function, p mesh £n+1 5 ,+1 max_1iter exceeded?
-

|
Yes

Initial adaptive
physmal mesh

3.“3

Calculate new physical mesh ="

|

Calculate Calculate new Linear
density computational mterpolatlon
function, p mesh &1 (& ntl
.

Calculate new st > ¢t
solution u™ " max?
Set numerical
parameters for PDE

(Updata iteration]{

L n<n+1

Figure 1. A program flow to solve a PDE using MMPDE. It is divided into two parts:
finding the best initial mesh, and performed calculation to the PDE solution.

Preliminary results

We tested our implementation in Python for both uniform mesh and adaptive mesh.
All programs are written in Python v3.11. Some libraries that we use are NumPy v1.25,
SciPy v1.11, and mpidpy v4.1. We running all programs in the machine with
specification Intel® Core™ i7-9750H CPU @ 2.60GHz x 12.

In Fig. (2), we showed the initial mesh after we solved the steady state solution of Eq. (2).

= (/f;, p(2) dz) /|1

:= x; — T ;—1. The mesh points are accumulated to the area near the jump to

increase the resolution of the solutions.
N=61

The discrete value of p(x;) is calculated with the formula (p

where Ij

10- Figure 2. (left) the distribution of
05 | | mesh points in the domain. (right)
discrete value of p(x;)

mesh density
N
o
o
o

02 s N I G S
. N = 61 . Figure 3. (top-left) the solution of Eq.
151 . // (1) using MMPDE; (top-right) the
10| consomergrrnagooecgoersgrgoog | evolution of mesh Zj; (bottom-left)
’ ZZ e J TE | es *«/ the ;olutirc:n of Eq. (1) ESiT)g uniform
=~ 7\ mesh with coarse mesh; (bottom-
dl <

IS

-1.0

| right) the solution of Eq. (2) using
» . uniform mesh with fine mesh:;

1.5

) 1.0 | 1 —t—
1.0 l
0.6

0.5 1 AARS BRI 0.41

0.2 ‘

0.6 00 02 04 06 08 1.0

X X

00 02 04
In Fig. (3) we clearly see that with the same amount of number of points, adaptive mesh
is outperformed uniform mesh in its quality of solution.

< () sec

Figure 4. All L'-norm error for uniform mesh

5 109 4 0.6 secs
- : 1.8 . . .
3 T ssecs 4. and adaptive mesh for different time steps
g 23.9 mi _ —4 _ —5
:;E 10 1_51.6 minsl3-8 mins 41 mins 1.8 hours 7.6 hours rglgi mins (ht —]-O and ht -]-O)
|
-
- 102
% 10 —e— uniform
< adaptive (hy=107%)
Ex 1073 23.1 mins adaptive (h;=107")

103
N

10?

Comparsion to its L'-norm error, it is really expensive to achieve the same amount

of error that has been attained by the adaptive mesh. In Fig. (4), we notice that it only
takes 1.6 minutes using adaptive mesh with h; = 10™* to get the similar error with
using uniform mesh (38.4 minutes). There is a speedup around 24 times.

On-going work

After we have tested our Python implementation gained a speed up and work according
to the plan, we moved to the next step to speed up more using mpidpy library. This plan
for parallel implementation is intra-node communicatio means that we utilize the cores
in the same chip, not in the different machine or node.

To design the paralle algorithm of MMPDE, we identify the primitive task (e.g., the
calculation of new physical mesh in mesh calculation and PDE calculation, see Fig. (1)),
identifying data communication pattern among the discretization mesh, and looking for
ways to agglromerate those task. This procedure has been confirmed to be scalable the
vibrating string equation [5].

Some technical details how to implement our parallel version of MMPDE heavily
follows the structure in [4]. But instead of using multiprocessing module, we use

mpi4dpy.
Acknowledgment

This research is funded by Indonesian Directorate General of Education, Research and Technology
through Young Lecturer Scheme with grant number 7713/1T10.11/PPM.04/2023.

References

[1] W. Huang and R.D. Russel. 2010. Adaptive moving mesh methods. Vol. 174. Springer Science &
Business Media.

[2] C. Tannahill and J. Wan. 2023. MM-ADMM: Implicit integration of MMPDEs in parallel.
Computer & Mathematics with Applications 141 (2023), 67-79. doi:10.1016/j.camwa.2023.03.019
[3] P. Pacheco and M. Malensek. 2021. An Introduction to Parallel Programming. Morgan
Kuafmann.

[4] J. Palach. 2014. Parallel Programming with Python. Packt Publishing.

[5] M.J. Quinn. 2004. Parallel Programming in C with MPIl and OpenMP. McGraw-Hill Higher
Education.

