
Revisiting MMPDE algorithm with Python:

A possible direction into parallel algorithm of MMPDE
Henokh Lugo Hariyanto and Arif Wicaksono Septyanto

Institut Teknologi Kalimantan

Introduction Preliminary results

References

On-going work

Problem definition

Methods

[1] W. Huang and R.D. Russel. 2010. Adaptive moving mesh methods. Vol. 174. Springer Science &
Business Media.
[2] C. Tannahill and J. Wan. 2023. MM-ADMM: Implicit integration of MMPDEs in parallel.
Computer & Mathematics with Applications 141 (2023), 67-79. doi:10.1016/j.camwa.2023.03.019
[3] P. Pacheco and M. Malensek. 2021. An Introduction to Parallel Programming. Morgan
Kuafmann.
[4] J. Palach. 2014. Parallel Programming with Python. Packt Publishing.
[5] M.J. Quinn. 2004. Parallel Programming in C with MPI and OpenMP. McGraw-Hill Higher
Education.

- With increasing in a trend of muticore CPUs, demands to develop parallel software is
high [3]
- Solving PDE with initial value that contains jump is very problematic with uniform
mesh. In here we will demonstrate how to solve it using an adaptive mesh.
- Adaptive mesh categorized into three types: -adaptive mesh, -adaptive mesh, and -
adaptive mesh. The moving mesh PDE (MMPDE) algorithm is categorized as -adaptive
mesh.
- One of the most recent work to parallelize MMPDE [2] is only shown for the mesh
generation, without the consideration to couple it for solving PDE

MMPDE algorithm is tested to the following a toy problem Burger's equation with an
initial values that contains jump

Acknowledgment

The above equation has an exact solutions

Figure 3. (top-left) the solution of Eq.
(1) using MMPDE; (top-right) the
evolution of mesh ; (bottom-left)
the solution of Eq. (1) using uniform
mesh with coarse mesh; (bottom-
right) the solution of Eq. (2) using
uniform mesh with fine mesh;

The idea of MMPDE is to find the transformation function from computational
coordinates to physical coordinates , such that it satisfied the gradient flow of the
following functional.

where is the mesh density defined in a mesh
 for a specific time as

We can write explicitly the gradient flow of

substitute from the steady state of , we have

where is a positive-definite differential operator which can be chosen with
considerate flexbility, and is a user specified parameter for adjusting the
response time of mesh movement to change in .

Figure 1. A program flow to solve a PDE using MMPDE. It is divided into two parts:
finding the best initial mesh, and performed calculation to the PDE solution.

In Fig. 1, we showed the program flow how to implement MMPDE. This flowchart is
an adaptation of [1] with more detail.

We tested our implementation in Python for both uniform mesh and adaptive mesh.
All programs are written in Python v3.11. Some libraries that we use are NumPy v1.25,
SciPy v1.11, and mpi4py v4.1. We running all programs in the machine with
specification Intel® Core™ i7-9750H CPU @ 2.60GHz 12.

In Fig. (3) we clearly see that with the same amount of number of points, adaptive mesh
is outperformed uniform mesh in its quality of solution.

Figure 4. All -norm error for uniform mesh
and adaptive mesh for different time steps
(and)

Figure 2. (left) the distribution of
mesh points in the domain. (right)
discrete value of

In Fig. (2), we showed the initial mesh after we solved the steady state solution of Eq. (2).

The discrete value of is calculated with the formula

where . The mesh points are accumulated to the area near the jump to
increase the resolution of the solutions.

Comparsion to its -norm error, it is really expensive to achieve the same amount
of error that has been attained by the adaptive mesh. In Fig. (4), we notice that it only
takes 1.6 minutes using adaptive mesh with to get the similar error with
using uniform mesh (38.4 minutes). There is a speedup around 24 times.

After we have tested our Python implementation gained a speed up and work according
to the plan, we moved to the next step to speed up more using mpi4py library. This plan
for parallel implementation is intra-node communicatio means that we utilize the cores
in the same chip, not in the different machine or node.

To design the paralle algorithm of MMPDE, we identify the primitive task (e.g., the
calculation of new physical mesh in mesh calculation and PDE calculation, see Fig. (1)),
identifying data communication pattern among the discretization mesh, and looking for
ways to agglromerate those task. This procedure has been confirmed to be scalable the
vibrating string equation [5].

Some technical details how to implement our parallel version of MMPDE heavily
follows the structure in [4]. But instead of using multiprocessing module, we use
mpi4py.

This research is funded by Indonesian Directorate General of Education, Research and Technology
through Young Lecturer Scheme with grant number 7713/IT10.II/PPM.04/2023.

