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I. Introduction Cost,,, = W, x> Y pod,, % R, (4)
t=1

sE.S
Microservice-based applications are increasingly deployed on Kubernetes due to their

flexibility and scalability. However, maintaining end-to-end latency within strict Service Cost, , , = Cost g, + Cost,___ (5)
Level Objectives (SLOs) remains challenging, especially under bursty workloads and
complex service dependencies. Existing approaches suffer from several fundamental Figures 2 and 3 illustrate the relationship between total pod usage and latency across
limitations. different autoscaling strategies, where Figure 2 focuses on mean latency and Figure 3
highlights tail latency (p95), revealing clear performance differences among the

 The default Horizontal Pod Autoscaler (HPA) decides whether to scale only based on .
strategies.

current resource usage, such as CPU or memory [1].

Under sudden load spikes, HPA triggers scale-out after utilization increases, causing T o
cold starts, temporary under-provisioning, and frequent SLO violations [2]. 1A
Existing approaches either focus purely on resource metrics or require non-trivial
changes to the Kubernetes control plane.

I1. Overview of Proposed Method

We propose an autoscaling method that combines:
1. LSTM-based prediction of future CPU utilization _ ® N
2. Latency-driven penalty based on p95 response latency and SLO threshold | | | | | | m x
Total pods
For each target microservice, an LSTM model predicts the next step CPU utilization @ target=60 | HPA A target=60 |LSTM M target=60 | SLO+LSTM(w = 0.05) % target=60 | SLO+LSTM(w = 0.1)
The system monitors current p95 latency and compares it with an SLO latency target O et |t A teeett0|LTM B e o)
A latency aware weight increases when p95 latency exceeds the SLO target Figure 2. Resource usage versus mean latency.
The composite load is defined as predicted CPU multiplied by this latency aware
weight
This composite metric is exported through KEDA as an external metric
Scaling is performed based on the composite load metric value presented above,

rather than the CPU utilization used by HPA.
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O target=70 | HPA A target=70 | LSTM [0 target=70 | SLO+LSTM(w = 0.05) % target=70 | SLO+LSTM(w = 0.1)
@ target=80|HPA A target=80|LSTM W target=80|SLO+LSTM(w =0.05) % target=80|SLO+LSTM(w = 0.1)

Figure 3. Resource usage versus tail latency.
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Table 1. Total cost of autoscaling schemes under different SLO priority settings.
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Figure 1. Proposed autoscaling architecture in Kubernetes.

I11. Evaluation [ STM+SLO(w=0.05)

(target value=80)
We compare three autoscaling strategies under the same microservice workload:
1. Baseline HPA
Uses current CPU utilization with different target values such as 80 percent
Predictive scaling with LSTM only
Uses LSTM based CPU prediction as the scaling metric without explicit SLO
feedback
Proposed SLO aware predictive scaling
Uses the composite load metric that combines predicted CPU utilization and the
latency aware weight for several values of w = 0.05, 0.1

A
-

LSTM+SLO(w=0.1)
(target value=80)

1,413.30 814.07 2,153.37

Table 1 summarizes the cost analysis under different SLO weight settings Costg; o,
Costeg, and total,.,s; across the evaluated autoscaling schemes.

In our experiments, an SLO violation is defined as a p95 latency exceeding 300ms,
and the analysis focuses on the violation-prone scenario with a target value of 80.
As shown in Table 1, the LSTM-based approach substantially reduces the SLO related
cost compared with the baseline HPA while keeping resource cost at a similar level.
In addition, we evaluate these three strategies with a cost model summarized in Moreover, the SLO-aware LSTM+SLO methods further lower Costg; o with only a

Equations (1) to (5). modest increase in Cost,,s, resulting in the lowest overall cost. This advantage

For each request, we define an indicator I/; that becomes zero when the request becomes more pronounced as Wy, , increases, indicating that the proposed method
latency L; satisfies the SLO target and one when the latency exceeds the SLO target is especially beneficial when SLO violations are heavily penalized.

The total number of SLO violating requests V;,;,; is obtained by summing all V;, and

the SLO related cost Costg;p is computed as Wq; o multiplied by V¢4, divided by the .
total number of requests N. IV. Conclusion

Resource cost Cost,..¢ is calculated from the number of pods of each service over time _ . . _
and the resource cost R, of each service, weighted by W..... The overall cost CoSt;p¢g; In >ummary, this re.sea.rch demonsjcrates that mcorporatmg.SLO awareness into
predictive autoscaling improves tail latency and SLO compliance.

is then defined as the sum of Costg;p and Cost, .. _ .
Experiments on the Google Online Boutique application with workloads derived from

the Alibaba Cluster Trace show the following implications.
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B {0, if L, < SLO,

1, i L; > SLOtaTget The proposed method reduces p95 tail latency compared with standard CPU-based
N HPA and prediction only scaling
Vieta = Z |4 It lowers the SLO violation ratio while keeping pod usage at a similar or slightly higher
1=1 level
V.ot Under a cost model where SLO violations are heavily weighted, the proposed method

Costgr 0= Werp X< % achieves the lowest total cost among the evaluated strategies
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