
Figures 2 and 3 illustrate the relationship between total pod usage and latency across
different autoscaling strategies, where Figure 2 focuses on mean latency and Figure 3
highlights tail latency (p95), revealing clear performance differences among the
strategies.

• Table 1 summarizes the cost analysis under different SLO weight settings 𝐶𝑜𝑠𝑡𝑆𝐿𝑂,
𝐶𝑜𝑠𝑡res, and 𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡 across the evaluated autoscaling schemes.
In our experiments, an SLO violation is defined as a p95 latency exceeding 300ms,
and the analysis focuses on the violation-prone scenario with a target value of 80.

• As shown in Table 1, the LSTM-based approach substantially reduces the SLO related
cost compared with the baseline HPA while keeping resource cost at a similar level.
Moreover, the SLO-aware LSTM+SLO methods further lower 𝐶𝑜𝑠𝑡𝑆𝐿𝑂 with only a
modest increase in 𝐶𝑜𝑠𝑡𝑟𝑒𝑠, resulting in the lowest overall cost. This advantage
becomes more pronounced as 𝑊𝑆𝐿𝑂 increases, indicating that the proposed method
is especially beneficial when SLO violations are heavily penalized.

In summary, this research demonstrates that incorporating SLO awareness into
predictive autoscaling improves tail latency and SLO compliance.
Experiments on the Google Online Boutique application with workloads derived from
the Alibaba Cluster Trace show the following implications.

• The proposed method reduces p95 tail latency compared with standard CPU-based
HPA and prediction only scaling

• It lowers the SLO violation ratio while keeping pod usage at a similar or slightly higher
level

• Under a cost model where SLO violations are heavily weighted, the proposed method
achieves the lowest total cost among the evaluated strategies

SLO-Aware and Cost-Efficient Predictive

Autoscaling for Kubernetes Microservices

Microservice-based applications are increasingly deployed on Kubernetes due to their
flexibility and scalability. However, maintaining end-to-end latency within strict Service
Level Objectives (SLOs) remains challenging, especially under bursty workloads and
complex service dependencies. Existing approaches suffer from several fundamental
limitations.

• The default Horizontal Pod Autoscaler (HPA) decides whether to scale only based on
current resource usage, such as CPU or memory [1].

• Under sudden load spikes, HPA triggers scale-out after utilization increases, causing
cold starts, temporary under-provisioning, and frequent SLO violations [2].

• Existing approaches either focus purely on resource metrics or require non-trivial
changes to the Kubernetes control plane.

We propose an autoscaling method that combines:
1. LSTM-based prediction of future CPU utilization
2. Latency-driven penalty based on p95 response latency and SLO threshold

• For each target microservice, an LSTM model predicts the next step CPU utilization
• The system monitors current p95 latency and compares it with an SLO latency target
• A latency aware weight increases when p95 latency exceeds the SLO target
• The composite load is defined as predicted CPU multiplied by this latency aware

weight
• This composite metric is exported through KEDA as an external metric
• Scaling is performed based on the composite load metric value presented above,

rather than the CPU utilization used by HPA.

We compare three autoscaling strategies under the same microservice workload:
1. Baseline HPA

Uses current CPU utilization with different target values such as 80 percent
2. Predictive scaling with LSTM only

Uses LSTM based CPU prediction as the scaling metric without explicit SLO
feedback

3. Proposed SLO aware predictive scaling
Uses the composite load metric that combines predicted CPU utilization and the
latency aware weight for several values of 𝜔 = 0.05, 0.1

• In addition, we evaluate these three strategies with a cost model summarized in
Equations (1) to (5).

• For each request, we define an indicator 𝑉𝑖 that becomes zero when the request
latency 𝐿𝑖 satisfies the SLO target and one when the latency exceeds the SLO target

• The total number of SLO violating requests 𝑉𝑡𝑜𝑡𝑎𝑙 is obtained by summing all 𝑉𝑖, and
the SLO related cost 𝐶𝑜𝑠𝑡𝑆𝐿𝑂 is computed as 𝑊𝑆𝐿𝑂 multiplied by 𝑉𝑡𝑜𝑡𝑎𝑙 divided by the
total number of requests 𝑁.

• Resource cost 𝐶𝑜𝑠𝑡𝑟𝑒𝑠 is calculated from the number of pods of each service over time
and the resource cost 𝑅𝑠 of each service, weighted by 𝑊𝑟𝑒𝑠. The overall cost 𝐶𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙
is then defined as the sum of 𝐶𝑜𝑠𝑡𝑆𝐿𝑂 and 𝐶𝑜𝑠𝑡𝑟𝑒𝑠.

Ⅰ. Introduction

ⅠⅠ. Overview of Proposed Method

ⅠV. Conclusion

Acknowledgement
This research was supported by the Regional Innovation System & Education (RISE) program
through the Jeju RISE Center, funded by the Ministry of Education (MOE) and the Jeju Special Self-
Governing Province, Republic of Korea (2025-RISE-17-001). It was also supported by the Basic
Science Research Program to the Research Institute for Basic Sciences (RIBS) of Jeju National
University through the National Research Foundation of Korea (NRF), funded by the Ministry of
Education (RS-2019-NR040080).

References

ⅠⅠⅠ. Evaluation

Figure 1. Proposed autoscaling architecture in Kubernetes.

Table 1. Total cost of autoscaling schemes under different SLO priority settings.

[1] K. Aykurt et al.et al., “HyPA: Hybrid Horizontal Pod Autoscaling with Automated Model
Updates,” 2023 IEEE Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN), Dresden, Germany, 2023, pp. 8-14.
[2] S. Xie, J. Wang, B. Li, Z. Zhang, D. Li and P. C. K. Hung, “PBScaler: A Bottleneck-Aware
Autoscaling Framework for Microservice-Based Applications,” IEEE Transactions on Services
Computing, vol. 17, no. 2, pp. 604-616, 2024.

Hyunsu Jeong
Dept. of Computer Engineering

 Jeju National University

Geonho Kim
Dept. of Computer Engineering

 Jeju National University

Joon-Min Gil*

 Dept. of Computer Engineering
 Jeju National University

Figure 2. Resource usage versus mean latency.

Figure 3. Resource usage versus tail latency.

* Corresponding author: Joon-Min Gil

	제목 없는 구역
	슬라이드 1

