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Background Observation
Multimodal Large Language Models (MLLMs) have become a rising MLLM training faces substantial per-device memory pressure.
research focus. With recent models scaling to hundreds of billions of To alleviate this, it commonly leverages pipeline parallelism (PP),
parameters (B), training MLLMs requires large-scale accelerator which partitions the MLLM across multiple devices.
clusters (often with thousands of accelerators). —Desp Learning Neural Netwerk
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2022 2023 2024 2025 which significantly degrades overall performance.
However, MLLM training often exhibits low cluster utilization.
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MLLM Modality-wise Pipeline Bubble Modeling
We first categorize the idle time in the pipeline (white regions). The following formula introduces an overlapped bubble time term.
By maximizing overlapped-bubble time, it reduces the exposed
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S12ge 0| Fwo WD W3 o ¢ B S oo 3 310 4 modality bubbles and thereby minimizes the step time T.
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Since modality inputs are usually unstable (e.g., images with different (modality) layers to stage i . B,  number of PP bubbles (global)
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resolutions, videos with varying temporal lengths, etc.), idle time Taps o0 . B, number of Modality bubbles at stage i
caused by variable modality inputs is classified as modality bubbles . M,  number of micro-batches (global) | |
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(shown as hatched white regions). To the best of our knowledge, there . qim avg.forward time per micro-batch at can be hidden
is no formal model to express MLLM training. stage L

Optimization target: maximizing overlapped-bubble time

. . . 1. Stage position: earlier stages (il )
By temporarily setting the modal inputs to a constant value, we L.
. e , L 2. Modal layers distribution: more modal layers (m1)
eliminate the variability in the modal input. As a result, the remaining
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by existing pipeline scheduling techniques (e.g., [1][2])

* PP bubbles B :

 Bubbles overlapping Bg-fm(i): By adjusting (I, m), the gain from overlapped bubble time could
We discovered that modality bubbles could be hidden inside PP outweigh the increased compute and bubble time, reducing the
bubbles. We thus introduce the overlapped-bubble term in our model. step time and yielding performance benefit.

End-to-End Training Performance Evaluation

Experimental Setup
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Modality bubbles are effectively overlapped by the PP bubbles at the WHH _ H. A .
: : : Pipeline execution timeline on 4,096 xNPU cluster
front of the pipeline (red box marks overlap regions).
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