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• NVIDIA Nsight system is used to profile program execution.
• NVTX annotations are inserted to mark CPU offloaded IBM execution in the Nsight profiler.
• Memory Optimization

• IBM vforce related variables are allocated in CPU memory.
• Data memory placement is shown to have a significant impact on performance.

• OpenMP is used to exploit the 72-core capability of the Grace CPU.
• The offloaded IBM computation is parallelized across CPU cores.
• This improves the performance of irregular IBM workloads.

• CPU–GPU synchronization is used to ensure data dependencies between LBM and IBM.
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• Hardware Trend: Tightly Coupled CPU–GPU 
Architectures
• Modern HPC systems are moving toward 

tightly coupled CPU–GPU architectures.
• Faster CPU–GPU communication enables 

finer-grained workload distribution.
• Tightly coupled architectures enable new 

collaboration execution strategies.
• Workloads can be assigned based on their 

computational characteristics.

• NVIDIA Grace Hopper Overview
• NVIDIA Grace Hopper is a tightly coupled 

CPU–GPU superchip.
• It integrates a Grace CPU and a Hopper GPU in 

a single package.
• The two processors are connected via NVLink-

C2C.

• Lattice Boltzmann Method (LBM)
• LBM solves fluid flow using mesoscopic 

particle distributions.
• The method operates on a fixed Eulerian 

lattice.
• It is highly parallel and well suited for GPU 

acceleration.

• Immersed Boundary Method (IBM)
• IBM represents solid boundaries using 

Lagrangian points.
• IBM couples LBM Eulerian fluid grids with 

Lagrangian boundaries.
• Involves irregular memory accesses that 

challenge performance on GPUs.

• Platform: Miyabi-G Supercomputer at JCAHPC
• Designed for large-scale scientific simulations.
• The node of Miyabi-G system features NVIDIA 

Grace Hopper GH200.
• Experiments are conducted on the Miyabi-G.

• We study LBM–IBM coupling 
simulations on Grace Hopper 
GH200.

• The fluid solver (LBM) is kept 
on the Hopper GPU.

• The IBM is selectively (vforce) 
offloaded to the Grace CPU.

• Tightly coupled CPU–GPU systems such as Grace Hopper unlock new potential for high-
performance computing beyond LBM–IBM fluid simulations.

• Idle processing resources can be effectively utilized to improve overall system efficiency.

• Matching workloads to the most suitable computing device is critical for performance.

• System-level CPU–GPU cooperation can significantly enhance overall throughput.

Introduction Results

Methodology

Conclusion
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• Extending IBM Offloading with MPI-Split Double-Case Execution
• MPI_Split is used to run two processes at the same time.
• Each process executes one simulation case.
• Idle CPU–GPU bubbles caused by offloading are filled after 2 case interleaving
• Overall system throughput is improved.

• NVIDIA Multi-Process Service (MPS)
• NVIDIA MPS is used to enable two processes to share one GPU, improving overall 

system throughput furthermore.
• GPU resources are better utilized under multi-process workloads when using MPS.

• IBM Time Comparison after IBM 
Offloaded to CPU
• IBM vforce runtime decreases 

from 3.35 ms to 3.017 ms 
compared with GPU baseline.

• Confirms the effectiveness of 
IBM offloading to CPU.

• System-Level Performance Results 
• System-level performance is 

evaluated using normalized 
throughput and MLUPS 
(Million Lattice Updates Per 
Second).

• Baseline:  fully GPU-Based 
execution as baseline.

• Offloading:  throughput is 
reduced due to the overhead 
introduced by CPU–GPU 
synchronization.

• MPI_Split:  overall system 
throughput increases by 7.6% of 
2 cases.

• MPI_Split + MPS:  overall 
system throughput increases 
by 27.1% of 2 cases.

• MPI_Split + MPS + 
Memory_Optimized:  overall 
system throughput increases 
by 46.2% of 2 cases.

• Performance Improvement of 
Memory Optimization
• Average execution time of IBM 

iterations reduced 45% after 
memory optimization.

• Improved CPU memory access 
locality contributes to the 
performance gain.

Future Work

• Workload balance to maximize CPU core utilization while keeping GPU efficiency.

• Scalability: Extend IBM-LBM cases performing on multiple GPUs.
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