
IBM
L
B
M

LBM ...Hopper
GPU

Grace
CPU

idle

IBM
L
B
M

LBM

time

Offloading

IBM
vforce

L
B
M

LBM ...Hopper
GPU

Grace
CPU

L
B
M

LBM

time

IBM
vforce

Baseline

• NVIDIA Nsight system is used to profile program execution.
• NVTX annotations are inserted to mark CPU offloaded IBM execution in the Nsight profiler.
• Memory Optimization

• IBM vforce related variables are allocated in CPU memory.
• Data memory placement is shown to have a significant impact on performance.

• OpenMP is used to exploit the 72-core capability of the Grace CPU.
• The offloaded IBM computation is parallelized across CPU cores.
• This improves the performance of irregular IBM workloads.

• CPU–GPU synchronization is used to ensure data dependencies between LBM and IBM.

 IBM offloading

Hopper
GPU

IBM

LB
MLBM ...

Grace
CPU

LB
MLBM

time

IBM
NVLink

LBM
1

IBM1

LBM
2

IBM2

LBM
1

IBM1

LBM
2

IBM2

CUDA kernel
Hopper GPU

Grace CPU

36 CPU
cores

36 CPU
cores

...

NVLink

Offloading the IBM Workloads for Efficient LBM
Fluid Simulations on Grace Hopper

Yize Yang1, Takashi Shimokawabe2

1Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
2Information Technology Center, The University of Tokyo, Tokyo, Japan

• Hardware Trend: Tightly Coupled CPU–GPU
Architectures
• Modern HPC systems are moving toward

tightly coupled CPU–GPU architectures.
• Faster CPU–GPU communication enables

finer-grained workload distribution.
• Tightly coupled architectures enable new

collaboration execution strategies.
• Workloads can be assigned based on their

computational characteristics.

• NVIDIA Grace Hopper Overview
• NVIDIA Grace Hopper is a tightly coupled

CPU–GPU superchip.
• It integrates a Grace CPU and a Hopper GPU in

a single package.
• The two processors are connected via NVLink-

C2C.

• Lattice Boltzmann Method (LBM)
• LBM solves fluid flow using mesoscopic

particle distributions.
• The method operates on a fixed Eulerian

lattice.
• It is highly parallel and well suited for GPU

acceleration.

• Immersed Boundary Method (IBM)
• IBM represents solid boundaries using

Lagrangian points.
• IBM couples LBM Eulerian fluid grids with

Lagrangian boundaries.
• Involves irregular memory accesses that

challenge performance on GPUs.

• Platform: Miyabi-G Supercomputer at JCAHPC
• Designed for large-scale scientific simulations.
• The node of Miyabi-G system features NVIDIA

Grace Hopper GH200.
• Experiments are conducted on the Miyabi-G.

• We study LBM–IBM coupling
simulations on Grace Hopper
GH200.

• The fluid solver (LBM) is kept
on the Hopper GPU.

• The IBM is selectively (vforce)
offloaded to the Grace CPU.

• Tightly coupled CPU–GPU systems such as Grace Hopper unlock new potential for high-
performance computing beyond LBM–IBM fluid simulations.

• Idle processing resources can be effectively utilized to improve overall system efficiency.

• Matching workloads to the most suitable computing device is critical for performance.

• System-level CPU–GPU cooperation can significantly enhance overall throughput.

Introduction Results

Methodology

Conclusion

This work was partly supported by JSPS KAKENHI Grant Number JP24K02947 and JHPCN
project jh250037.

Acknowledgements

IBM:vforce

Iteration
1Initial Iteration

2
Iteration

3
Iteration

4
Iteration

5

vforce
stage1 fill&MPI vforce

stage2

Source: NVIDIA

• Extending IBM Offloading with MPI-Split Double-Case Execution
• MPI_Split is used to run two processes at the same time.
• Each process executes one simulation case.
• Idle CPU–GPU bubbles caused by offloading are filled after 2 case interleaving
• Overall system throughput is improved.

• NVIDIA Multi-Process Service (MPS)
• NVIDIA MPS is used to enable two processes to share one GPU, improving overall

system throughput furthermore.
• GPU resources are better utilized under multi-process workloads when using MPS.

• IBM Time Comparison after IBM
Offloaded to CPU
• IBM vforce runtime decreases

from 3.35 ms to 3.017 ms
compared with GPU baseline.

• Confirms the effectiveness of
IBM offloading to CPU.

• System-Level Performance Results
• System-level performance is

evaluated using normalized
throughput and MLUPS
(Million Lattice Updates Per
Second).

• Baseline: fully GPU-Based
execution as baseline.

• Offloading: throughput is
reduced due to the overhead
introduced by CPU–GPU
synchronization.

• MPI_Split: overall system
throughput increases by 7.6% of
2 cases.

• MPI_Split + MPS: overall
system throughput increases
by 27.1% of 2 cases.

• MPI_Split + MPS +
Memory_Optimized: overall
system throughput increases
by 46.2% of 2 cases.

• Performance Improvement of
Memory Optimization
• Average execution time of IBM

iterations reduced 45% after
memory optimization.

• Improved CPU memory access
locality contributes to the
performance gain.

Future Work

• Workload balance to maximize CPU core utilization while keeping GPU efficiency.

• Scalability: Extend IBM-LBM cases performing on multiple GPUs.

Email: yang-y@g.ecc.u-tokyo.ac.jp

