SCA /HPCAsia 2026 (Osaka, Japan) Poster
Jan. 27th, 2026; PM13:30-16:00

Halve the Amount of Storage
Transfer for LU Decomposition
with Complete Pivoting

Hiroshi Murakami (Tokyo Metropolitan
Univ. (Retiree Affilate))

Minami-Osawa, Hachi-Oji, Tokyo, Japan
email: mrkmhrsh at-mark tmu.ac.jp

ABSTRACT

We will show that the amount of memory
transter to calculate the LU decomposi-
tion with complete pivoting can be halved
by a simple coding modification. When we
introduce the complete pivoting, the tiling
method cannot be applied to make LU de-
composition.

For the size n matrix A in an array, we
sequentially at the k-th step iteration the
pivot which has the largest magnitude is
searched in the area A(k:n,k:n), and the
columns and rows are exchanged appropri-
ately to make the pivot element be placed
at the principal diagonal, and then the k-
th step elimination is applied for the area

1

Methods

The trivial method to make LU decompo-
sition with complete pivoting for the size
n matrix A stored in an array is, at the
k-th step’s iteration the pivot is searched
which has the largest in magnitude in the
area A(k:n,k:n), and the columns and rows
are exchanged appropriately to place the
pivot element at the k-th diagonal, and
then the £-th step’s elimination is applied
for the area A(k+1:n,k+1:n). By this triv-
ial method of calculation, in each step of
the iteration the area of two dimensional
array whose area is gradually shrinking is
swept twice.

Our present method, by a simple coding
modification, changes the order of the ac-
cess to the storage of the array so that the
process of updating the matrix elements
by eliminations and the one to search the
largest element in magnitude are merged
together, which reduces the number of sweeps
of the area A(k+1:n,k+1:n) in the k-th iter-
ation from twice to only once.

5

Experiment 2 (Server, OpenMP Parallel)

e Server: A dual CPU node(intel Xeon Platinum
8368) 38 cores/CPU (16 Pcores, 22 Ecores)
L3=57MB, DDR4 3200 MEM 256GB /node,

8 MEM channels.

e Measured elapsed times (in sec) for LU decom-

positions.

e Compiler: intel ifort ver. 2021.10
Compiler flags:-0fast -fma -align array256byte
—qopenmp —-xCORE-AVX2

e FP64, OMP parallel (multi-core calculation)

z
5] =
E sl Co‘mplete Ee g g Present / Trivial —e—
o Present —e— E 0.8 108
UZ) 64 Partial 8- g o
@ ‘ T 0.71 107
| o :
= o b

= 06 106
2 8
m) 051 105
o 1| T 8-n e N T - WO = T | o)
= ‘ L] o 4 ‘ 4
& 1000 10000 = 0'1 000 10000 0

N = N

Ratios of elapsed times to without Ratio of elapsed times of complete
pivoting (Server, 8 threads, 1CPU) pivotings (Server, 8 threads, 1CPU)

z
6 >
E sl Co‘mplete Ee g E Present / Trivial —e—
o Present —e— e 0.8 108
Z 6 Partial &g i}
2] 7]
> 151.:1 ¢
] o 4 ; 0.7+t L 0.7
= ", w
5 =
= 06 106
2] o
% »
5 o
w IS 05f 105
o = Bg g w
9 1k £ _[]1 Lol_
= L | (e} L
& 1000 10000 = 0'14000 10000 04
N = N

Ratios of elapsed times to the one Ratio of elapsed times of complete

without pivoting (VE, 6 threads) pivotings (VE, 6 threads)
=
5 =
E Co‘mplete -l E Present / Trivial —e—
8 — —
o Present —e— E 08f 108
Z 6 Partial 8- 6 w
(2])
> H:J ¢
) T o7t 107
w
= @ 1
= =
[L 4
o F 06 0.6
% 3
5 4
w S o5f 4105
'-6— B g o b w
o 1 oy 5
. L] o 4 . 4
& 1000 10000 £ %too 10000 0
N = N

Ratios of elapsed times to the one Ratio of elapsed times of complete

without pivoting (VE, 8 thread)s pivotings (VE, 8 threads)

z
5 >
E sl ‘ T ‘C‘o‘mplete - g g Present / Trivial —e—
o Present —e— g 0.8 {108
Z 6 Partial &g]
U>) [B % ¢
& 4 m 14 P 0'75_\\«/.’/‘\‘\’\'_; v
= q . a b
= =
2 Eooef {06
i . .
e 2f 2 a
Z 1 :
w 0 0.5 105
) B) w
o 1r 1 o
= L o 4 s 4
é 1000 10000 = 0'1000 10000 0

N = N

Ratios of elapsed times to the one Ratio of elapsed times of complete
without pivoting (VE, 10 threads) pivotings (VE, 10 threads)

13

A(k+1:n,k+1:n). If this trivial method of
calculation is used, the area of two dimen-
sional array which is gradually shrinking
is swept twice in each step of iteration.

Our present method, by a simple coding
modification, the order of the access to
the storage of the array is changed so that
while in the elimination the updating pro-

Sample algorithms (For sequential codes)
g NO PIVOTING LU ALGORITHM in pseudo Fortran code. Array A(N,N).

DO K=1,N-1
DO J=K+1,N
C = A(K,J)/A(K,K)
DO I=K+1,N; A(I,J) = A(I,J) - A(I,K) * C; ENDDO

ENDDO
ENDDO
!
! PARTIAL PIVOTING LU ALGORITHM in pseudo code. Arrays: A(N,N),IPIV(N-1).
!
DO K=1,N-1
! Find the pivot in the "K"-th column "A(K:N,K)".
AMX = -1.0

DO I=K,N; IF(ABS(A(I,K)) > AMX) THEN;AMX=ABS(A(I,K));IPIV(K)=I;ENDIF;ENDDO
! Row exchange and elimination, column by column.
IF(IPIV(K) /= K) THEN; EXCHANGE (A(K,K), A(IPIV(K),K)); ENDIF
DO J=K+1,N
IF(IPIV(K) /= K) THEN; EXCHANGE (A(X,J), A(IPIV(K),J)); ENDIF
C 8 A(K,J)/A(K,K); DO I=K+1,N; A(I,J) = A(I,J) - A(I,K) * C; ENDDO
ENDD

‘ ‘C‘o‘mplete - B Present / Trivial —e—
Present —e—

6 Partial & g

0.8 108

0.7 107

0.6 ¢

) 106

05 405

1+ o o o -1 |

0'14000 10000
N

0.4

RATIO OF ELAPSED TIMES VS NO PIVOT

| | L
1000 10000
N

RATIO OF ELAPSED TIMES PRESENT/TRIVIAL

Ratios of elapsed times to without Ratio of elapsed times of complete
pivoting (Server, 8 threads, 2CPU) pivotings (Server, 8 threads, 2CPU)

Experiment 4 (GPU, OpenMP Parallel)

e GPU: NVIDIA A100 (MEM 80GB).
CPU: intel Xeon Platinum 8368(2.4GHz, 38Cores)
Dual; MEM 512GB.

e Measured elapsed times (in sec) for LU decom-

positions.

e Compiler: nvfort version 25.1-0

Compiler flags : -fast -03 -stdpar=gpu -mp=gpu

=
. 9] — : z
cess of the matrix elements and the search ENDDO = of Complte "= | S oo Present /Trivial =~] -gpu=mem:managed
. . | TRIVIAL COMPLETE PIVOTING LU ALGORITHM. Arrays: A(N,N),IPIV(K-1),JPIV(K-1). Z o Parial & | 6 3
process of the largest element in magni- ! 2 g 4 |
DO K=1,N-1 2 & o7 07 e FP32, OpenMP Parallel.
tude are merged together, which makes ux o0_fhg piver from MAUGILED. : - ’
’ e 2 F o6} {06 -
DO J=K,N i A - 2
. . T=AMX ! "T = -1.0" when calculation is parallel. < § e P Fr— z 1
the Sweep of the area A(k+1 'n, k+1 :n) not DO I=K,N; IF(ABS(A(I,J)) > T) THEN; T = ABS(A(I,J)); IP = I; ENDIF; ENDDO % < osl 1os SR S S Complete = S Present/ Trivial
twi but EN%)E(ST > AMX) THEN; AMX = T; IPIV(X) = IP; JPIV(K) = J; ENDIF 5 : o | et o | -
wice but once. IF(JPIV(K) /= K) THEN; EXCHANGE (A(1:N,K), A(1:N,JPIV(K))); ENDIF S 0 o O 04 5600 0.4 g © 6 £ oof 109
%E(IE)EX%)N/: K) THEN; EXCHANGE (A(K,KJ, A(IPIV(K),K)); ENDIF N < N = 4 2
B our ex eriments this reduction Of the IF(IPIVEK) /= K) THEN; EXCHANGE (A(X,J), A(IPIV(X),J)); ENDIF Ratios of elapsed times to without Ratio of elapsed times of complete uDUJ) E
y p 9 . ENSDB A(K,J)/A(K,K); DO I=K+1,N; A(I,J) = A(I,J) - A(I,K) * C; ENDDQO inOting (Server, 16 threads, 1CPU) inOtingS (Server, 16 threads, % 2E 2 g 0.8 4 0.8
amount of storage transfer for the matrix ENDDO 1CPU) s ' o
A has an effect to reduce the elapsed time : PRESENT COMPLETE PIVOTING LU ALGORITHM. Arrays: A(N,N), IPIV(N), JPIV(N).) o 11000 T s 5 ol e
| e s s s e s e s e s s T T T T T S T S S T S S S S S S S S S S S S S S ST S S E s < o« 2
! Find the pivot in "A(1:N,1:N)". 'é ——r : = : N < "
to Calculate the LU decomposition With él‘éIX §=I?NO = 8 C;gg':r:f’ BT E 08l Present/Trivial —e— | ¢ Ratios of elapsed times to the one Ratio of elapsed times of complete
. . T =AMX ! "T = -1.0" when calculation is made parallel. Z L - Partial &6 A without pivoting (GPU, 54 threads) pivotings (GPU, 54 threads)
DO I=1,N; IF(ABS(I,J) > T) THEN; T = ABS(A(I,J)); IP = I, ENDIF; ENDDO > & £ ol o
complete pivotting. L AECT > R THEN; ARX =T TPV (E) = 1P JPIVI)=" g ENDIE i 5 O o
[s q
DO K=1,N-1 2 = o 1o
IF(JPIV(K) /= K) THEN; EXCHANGE (A(1:N,K), A(1:N,JPIV(K)); ENDIF % 5 >
IF(IPIV(K) /= K) THEN; EXCHANGE (A(K,K), A(IPIV(K),K)); ENDIF S 2
AMX = -1.0 " S 05¢ 105
DO J=K+1,N 9 m
IF(IPIV(K) /= K) THEN; EXCHANGE(A(K,J),A(IPIV(X),J)); ENDIF = T S 0a ‘ 0a
C = AK,J)/AK,K) £ 1000 10000 E 1000 10000 .
T=AMX ! "T = -1.0" when calculation is parallel. N S N
DOA(%=I§;1;NA!(IFI;§69 i%%m}e{l)lt*ugdate and search. Ratios of elapsed times to without Ratio of elapsed times of complete
EN]ZI)E(SABS(A(I’J),) > T) THEN; T = ABS(A(I,J)); IP = I; ENDIF pivoting (Server, 32 threads, 2CPU) pivotings (Server, 32 threads,
EN]%E(%T > AMX) THEN; AMX = T; IPIV(K+1) = IP; JPIV(K+1) = J; ENDIF 2CPU)
ENDDO
2 6 10 14
Background Experiments) : Graphs of the experiments show that com-
Q e T o o ° ° °
= o) Corecent o = os) Present /Tivial ~=~ | g pared with the trivial approach, our present
. . 5 64 Partial 8- ¢ o 1 .
We tried to reduce the elapsed time of the We made experiments by using the follow- 2 W\ = o % 07 approach made the elapsed time to
LU decomposition with complete pivoting. ing four systems: : : ol | oe
It is not possible to make a tiled algorithm , . , 3 | Jos ® between 0.60 to 0.88 times for the PC
for the LU d » h lot 1. PC: Virtual machine (VM Ware on Windows 11) S L (No Parallel)
or € ecomposition winen complete . . £ e o o ‘ : ?
P P CPU:intel Corei5-6400(2.7GHz), Allocated MEM:16GB. E 1000 y 10000 c foo | 10000 o

pivoting is made.

The advantage to use the complete pivot-
ing is the best numerical stability and the
best accuracy of the solution. The partial
pivoting (row exchange) has a potential
numerical instability by the growth of ele-
ments in the U matrix in magnitudes. The
most disadvantage of the complete pivot-
ing is, the increase of operations to make
comparisons to find the pivot which is as
many as operations used for LU elimina-
tions. The overhead for the partial piv-
oting process can be ignored comparing
with the amount of computation for the
elimination process. However the partial
pivoting has a potential numerical insta-

2. Server: Dual CPU node (intel Xeon Platinum
8368),
38 cores/CPU(16 Pcores(2.5GHz),22 Ecores(2.3GHz)),
L3 cache=57MB, DDR4-3200 MEM 256GB /n-
ode. 8 MEM channels/CPU.

3. Vector Engine: NEC SX-Aurola TSUBASA Type20A
(10 Cores, MEM 48GB).
Vector Host: AMD EPIC 7402P(2.8GHz,24Cores)
1CPU, MEM 128GB.

4. GPU: NVIDIA A100 (MEM 80GB).
GPU Host: A dual CPU node (intel Xeon Plat-
inum 8368),
38 cores/CPU(16 Pcores(2.5GHz),22 Ecores(2.3GHz)),
L3 cache=57MB, DDR4-3200 MEM 512GB/n-
ode. 8 MEM channels/CPU.

Ratios of elapsed times to without Ratio of elapsed times of complete
pivoting (Server, 38 threads, 1CPU) pivotings (Server 38 threads, 1CPU)

Present/frivial ——
0.8 4 0.8

sl ‘ S ‘C‘o‘mplete - g

Present —e—
6 Partial &g
1

0.7 1 0.7

0.6 4 0.6

0.5 105

RATIO OF ELAPSED TIMES VS NO PIVOT

| | L
1000 10000
N

0'14000 10000
N

0.4

RATIO OF ELAPSED TIMES PRESENT/TRIVIAL

Ratios of elapsed times to without Ratio of elapsed times of complete

pivoting (Server, 38 threads, 2CPU) pivotings (Server, 38 threads,
2CPU)
-
- =
o ————r ‘ = ‘
= Complete --m- = Present / Trivial —e—
e 8- P 8 E o08f {08
o n resent —eo— = . .
Z 6 Partial &g o
A 2
0 £ o7t b 0.7
L
=]
F =
o = [N |
2 F 06 0.6
S 7
z %
w < osp {05
< [T
o) o
= L o 4 ‘ 4
& 1000 10000 £ %00 10000 0
N P N
o

Ratios of elapsed times to without Ratio of elapsed times of complete

® between 0.58 to 0.73 times for the Server
(OpenMP 76 threads),

® between 0.65 to 0.72 times for the Vec-
tor Engine (OpenMP 10 threads),

® between 0.72 to 0.95 times for the GPU
(OpenMP 54 threads).

When the matrix size is large and the num-
ber of threads is increased, the memory
transfer tends to become the bottle-neck
of the calculation. Under such situation,
the elapsed time of the present LU decom-
position method with complete pivoting is
nearly equivalent to that of methods with-
out pivoting or with partial pivoting.

bility. Recently, there iS the ROOk in- pivoting (Server, 76 threads, 2CPU) pivotings (Server, 76 threads,
oting method[1][2] whose pivoting process 2ert)
3 7 11 15
Conclusions

overhead is a few times of that of the par-
tial pivoting one, which usually can be ig-
nored comparing with the amount of com-
putations for the elimination process. The
Rook pivoting has no numerical instability
and the attainable accuracy of the solution
is comparable with the one by the com-
plete pivoting. However, today the com-
plete pivoting is still included in numerical
libraries and most text books do not men-
tion the Rook pivoting but explains the
partial pivoting and the complete pivoting
only.

In present study, we introduce an easy method
to reduce the elapsed time of the LU de-
composition calculation with complete piv-
oting.

Experiment 1 (PC, 1 Core, No Parallel)

e PC: A virtual machine (VM Ware on Windows 11)
CPU:intel Corei5-6400(2.7GHz), Allocated mem-
ory: 16GB. OS: AlmaLinux-9.

e Measured elapsed times (in sec) for LU decom-

positions.

e Compiler: Intel ifort ver 2021.10
Compiler flags:-0fast -fma -align array256byte
-xCORE-AVX2

e FP64, Single thread (1 Core), No Parallel.

3 T 3 1 ; 1
Complete --m- Present / Trivial —e—
o Present —e—
o5t Partial & | 25 09l 1os

0.8 108

0.7 107

0.6 - ? 0.6

P
118 Beg.gg © Bg 4

RATIO OF ELAPSED TIMES VS NO PIVOT

100 1000 10000 100 1000 10000

RATIO OF ELAPSED TIMES PRESENT / TRIVIAL

N N
Ratios of elapsed times to the one Ratio of elapsed times of complete
without pivoting (PC, 1 thread) pivotings (PC, 1 thread)
8

Experiment 3 (NEC Vector Engine, OpenMP
Parallel)

e (Vctor Engine) NEC-SX Aurola TSUBASA Type
20A: 10 cores / MEM 48GB.
(Vctor Host) AMD EPIC 7402P (2.8GHz, 28Cores)
Main Mem 128GB.

e Measured elapsed times (in sec) for LU decom-

positions.

e Compiler: NEC nfort (version 5.3.0);
Compiler flags : -03 -fopenmp

e FP64, OMP parallel (multi-core calculation)

o ‘C‘o‘mplete m- Present/frivial ——

8 —18

.}
= <
>
2 z
o =
o Present —e— E 08 108
Z 6 Partial 8- g fm}
[%2]] ¢
> w P
m 4Ir"l 14 & 07W o7
= - w
= =
a Fooef 106
[%2]
o w
5 e
o é 05F 105
o) B s S
o 1 By &
! ! Lo o 0.4 ! 0.4
& 1000 10000 = 1000 10000
N = N

Ratios of elapsed times to the one Ratio of elapsed times of complete
without pivoting (VE, 4 threads) pivotings (VE, 4 threads)

12

In the k-th iteration of the LU decompo-
sition, by a simple code modifications, we
merged the process to eliminate the ma-
trix elements A(k+1:n,k+1:n) and the pro-
cess to make the complete pivoting which
searches the largest matrix element in mag-
nitude in the area A(k+1:n,k+1:n), which
reduced the amount of storage transfer of
the array for the matrix A, and the elapsed
time for calculation of the LU decomposi-

tion with complete pivoting was also re-
duced.

REFERENCES

[1] George Poole, Larry Neal: ”The Rook’s Piv-
oting Strategy”, J. Comput. Appl. Math.,
Vol.123, No.1-2 (2000), pp.353—369.

[2] Xiao-Wen Chang: ”Some Features of Gaussian
Elimination with Rook Pivoting”, BIT, Vol.42,
No.1, pp.066-083 (2002).

[3] Gene Howard Golub and Chales F. Van Loan:
”Matrix Computations”, 4th Ed., The John
Hopkins Univ. Press (2013). in §3.4: ’Pivot-

ing’.

16

