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ABSTRACT

We will show that the amount of memory

transter to calculate the LU decomposi-

tion with complete pivoting can be halved

by a simple coding modification. When we

introduce the complete pivoting, the tiling

method cannot be applied to make LU de-

composition.

For the size n matrix A in an array, we

sequentially at the k-th step iteration the

pivot which has the largest magnitude is

searched in the area A(k:n,k:n), and the

columns and rows are exchanged appropri-

ately to make the pivot element be placed

at the principal diagonal, and then the k-

th step elimination is applied for the area
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A(k+1:n,k+1:n). If this trivial method of

calculation is used, the area of two dimen-

sional array which is gradually shrinking

is swept twice in each step of iteration.

Our present method, by a simple coding

modification, the order of the access to

the storage of the array is changed so that

while in the elimination the updating pro-

cess of the matrix elements and the search

process of the largest element in magni-

tude are merged together, which makes

the sweep of the area A(k+1:n,k+1:n) not

twice but once.

By our experiments, this reduction of the

amount of storage transfer for the matrix

A has an effect to reduce the elapsed time

to calculate the LU decomposition with

complete pivotting.
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Background

We tried to reduce the elapsed time of the

LU decomposition with complete pivoting.

It is not possible to make a tiled algorithm

for the LU decomposition when complete

pivoting is made.

The advantage to use the complete pivot-

ing is the best numerical stability and the

best accuracy of the solution. The partial

pivoting (row exchange) has a potential

numerical instability by the growth of ele-

ments in the U matrix in magnitudes. The

most disadvantage of the complete pivot-

ing is, the increase of operations to make

comparisons to find the pivot which is as

many as operations used for LU elimina-

tions. The overhead for the partial piv-

oting process can be ignored comparing

with the amount of computation for the

elimination process. However the partial

pivoting has a potential numerical insta-

bility. Recently, there is the Rook piv-

oting method[1][2] whose pivoting process
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overhead is a few times of that of the par-

tial pivoting one, which usually can be ig-

nored comparing with the amount of com-

putations for the elimination process. The

Rook pivoting has no numerical instability

and the attainable accuracy of the solution

is comparable with the one by the com-

plete pivoting. However, today the com-

plete pivoting is still included in numerical

libraries and most text books do not men-

tion the Rook pivoting but explains the

partial pivoting and the complete pivoting

only.

In present study, we introduce an easy method

to reduce the elapsed time of the LU de-

composition calculation with complete piv-

oting.
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Methods

The trivial method to make LU decompo-

sition with complete pivoting for the size

n matrix A stored in an array is, at the

k-th step’s iteration the pivot is searched

which has the largest in magnitude in the

area A(k:n,k:n), and the columns and rows

are exchanged appropriately to place the

pivot element at the k-th diagonal, and

then the k-th step’s elimination is applied

for the area A(k+1:n,k+1:n). By this triv-

ial method of calculation, in each step of

the iteration the area of two dimensional

array whose area is gradually shrinking is

swept twice.

Our present method, by a simple coding

modification, changes the order of the ac-

cess to the storage of the array so that the

process of updating the matrix elements

by eliminations and the one to search the

largest element in magnitude are merged

together, which reduces the number of sweeps

of the area A(k+1:n,k+1:n) in the k-th iter-

ation from twice to only once.
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Sample algorithms (For sequential codes)
!===========================================================================
! NO PIVOTING LU ALGORITHM in pseudo Fortran code. Array A(N,N).
!===========================================================================
DO K=1,N-1

DO J=K+1,N
C = A(K,J)/A(K,K)
DO I=K+1,N; A(I,J) = A(I,J) - A(I,K) * C; ENDDO

ENDDO
ENDDO
!===========================================================================
! PARTIAL PIVOTING LU ALGORITHM in pseudo code. Arrays: A(N,N),IPIV(N-1).
!===========================================================================
DO K=1,N-1

! Find the pivot in the "K"-th column "A(K:N,K)".
AMX = -1.0
DO I=K,N; IF(ABS(A(I,K)) > AMX) THEN;AMX=ABS(A(I,K));IPIV(K)=I;ENDIF;ENDDO
! Row exchange and elimination, column by column.
IF(IPIV(K) /= K) THEN; EXCHANGE ( A(K,K), A(IPIV(K),K) ); ENDIF
DO J=K+1,N

IF(IPIV(K) /= K) THEN; EXCHANGE ( A(K,J), A(IPIV(K),J) ); ENDIF
C = A(K,J)/A(K,K); DO I=K+1,N; A(I,J) = A(I,J) - A(I,K) * C; ENDDO

ENDDO
ENDDO
!===========================================================================
! TRIVIAL COMPLETE PIVOTING LU ALGORITHM. Arrays: A(N,N),IPIV(K-1),JPIV(K-1).
!===========================================================================
DO K=1,N-1

! Find the pivot from "A(K:N,K:N)".
AMX = -1.0
DO J=K,N

T = AMX ! "T = -1.0" when calculation is parallel.
DO I=K,N; IF(ABS(A(I,J)) > T) THEN; T = ABS(A(I,J)); IP = I; ENDIF; ENDDO
IF(T > AMX) THEN; AMX = T; IPIV(K) = IP; JPIV(K) = J; ENDIF

ENDDO
IF(JPIV(K) /= K) THEN; EXCHANGE ( A(1:N,K), A(1:N,JPIV(K)) ); ENDIF
IF(IPIV(K) /= K) THEN; EXCHANGE ( A(K,K), A(IPIV(K),K) ); ENDIF
DO J=K+1,N

IF(IPIV(K) /= K) THEN; EXCHANGE ( A(K,J), A(IPIV(K),J) ); ENDIF
C = A(K,J)/A(K,K); DO I=K+1,N; A(I,J) = A(I,J) - A(I,K) * C; ENDDO

ENDDO
ENDDO
!=========================================================================
! PRESENT COMPLETE PIVOTING LU ALGORITHM. Arrays: A(N,N), IPIV(N), JPIV(N).
!=========================================================================
! Find the pivot in "A(1:N,1:N)".
AMX = -1.0
DO J=1,N

T = AMX ! "T = -1.0" when calculation is made parallel.
DO I=1,N; IF(ABS(I,J) > T) THEN; T = ABS(A(I,J)); IP = I; ENDIF; ENDDO
IF(T > AMX) THEN; AMX = T; IPIV(1) = IP; JPIV(1)= J; ENDIF

ENDDO
DO K=1,N-1

IF(JPIV(K) /= K) THEN; EXCHANGE ( A(1:N,K), A(1:N,JPIV(K) ); ENDIF
IF(IPIV(K) /= K) THEN; EXCHANGE ( A(K,K), A(IPIV(K),K) ); ENDIF
AMX = -1.0
DO J=K+1,N

IF(IPIV(K) /= K) THEN; EXCHANGE( A(K,J),A(IPIV(K),J) ); ENDIF
C = A(K,J)/A(K,K)
T = AMX ! "T = -1.0" when calculation is parallel.
DO I=K+1,N ! Fused element update and search.

A(I,J) = A(I,J) - A(I,K) * C
IF(ABS(A(I,J)) > T) THEN; T = ABS(A(I,J)); IP = I; ENDIF

ENDDO
IF(T > AMX) THEN; AMX = T; IPIV(K+1) = IP; JPIV(K+1) = J; ENDIF

ENDDO
ENDDO
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Experiments

We made experiments by using the follow-
ing four systems:

1. PC: Virtual machine (VMWare on Windows 11)

CPU:intel Corei5-6400(2.7GHz), Allocated MEM:16GB.

2. Server: Dual CPU node (intel Xeon Platinum

8368),

38 cores/CPU(16 Pcores(2.5GHz),22 Ecores(2.3GHz)),

L3 cache=57MB, DDR4-3200 MEM 256GB/n-

ode. 8 MEM channels/CPU.

3. Vector Engine: NEC SX-Aurola TSUBASA Type20A

(10 Cores, MEM 48GB).

Vector Host: AMD EPIC 7402P(2.8GHz,24Cores)

1CPU, MEM 128GB.

4. GPU: NVIDIA A100 (MEM 80GB).

GPU Host: A dual CPU node (intel Xeon Plat-

inum 8368),

38 cores/CPU(16 Pcores(2.5GHz),22 Ecores(2.3GHz)),

L3 cache=57MB, DDR4-3200 MEM 512GB/n-

ode. 8 MEM channels/CPU.
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Experiment 1 (PC, 1 Core, No Parallel)

• PC: A virtual machine (VMWare on Windows 11)

CPU:intel Corei5-6400(2.7GHz), Allocated mem-

ory: 16GB. OS: AlmaLinux-9.

• Measured elapsed times (in sec) for LU decom-

positions.

• Compiler: Intel ifort ver 2021.10

Compiler flags：-Ofast -fma -align array256byte

-xCORE-AVX2

• FP64, Single thread (1 Core), No Parallel.
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Experiment 2 (Server, OpenMP Parallel)

• Server: A dual CPU node(intel Xeon Platinum

8368) 38 cores/CPU (16 Pcores, 22 Ecores)

L3=57MB, DDR4 3200 MEM 256GB/node,

8 MEM channels.

• Measured elapsed times (in sec) for LU decom-

positions.

• Compiler: intel ifort ver. 2021.10

Compiler flags：-Ofast -fma -align array256byte

-qopenmp -xCORE-AVX2

• FP64, OMP parallel (multi-core calculation)
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Experiment 3 (NEC Vector Engine, OpenMP
Parallel)

• (Vctor Engine) NEC-SX Aurola TSUBASA Type

20A: 10 cores / MEM 48GB.

(Vctor Host) AMD EPIC 7402P (2.8GHz, 28Cores)

Main Mem 128GB.

• Measured elapsed times (in sec) for LU decom-

positions.

• Compiler: NEC nfort (version 5.3.0);

Compiler flags：-O3 -fopenmp

• FP64, OMP parallel （multi-core calculation）
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Experiment 4 (GPU, OpenMP Parallel)

• GPU: NVIDIA A100 (MEM 80GB).

CPU: intel Xeon Platinum 8368(2.4GHz, 38Cores)

Dual; MEM 512GB.

• Measured elapsed times (in sec) for LU decom-

positions.

• Compiler: nvfort version 25.1-0

Compiler flags：-fast -O3 -stdpar=gpu -mp=gpu

-gpu=mem:managed

• FP32, OpenMP Parallel.
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Graphs of the experiments show that com-

pared with the trivial approach, our present

approach made the elapsed time to

• between 0.60 to 0.88 times for the PC

(No Parallel),

• between 0.58 to 0.73 times for the Server

(OpenMP 76 threads),

• between 0.65 to 0.72 times for the Vec-

tor Engine (OpenMP 10 threads),

• between 0.72 to 0.95 times for the GPU

(OpenMP 54 threads).

When the matrix size is large and the num-
ber of threads is increased, the memory
transfer tends to become the bottle-neck
of the calculation. Under such situation,
the elapsed time of the present LU decom-
position method with complete pivoting is
nearly equivalent to that of methods with-
out pivoting or with partial pivoting.
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Conclusions

In the k-th iteration of the LU decompo-
sition, by a simple code modifications, we
merged the process to eliminate the ma-
trix elements A(k+1:n,k+1:n) and the pro-
cess to make the complete pivoting which
searches the largest matrix element in mag-
nitude in the area A(k+1:n,k+1:n), which
reduced the amount of storage transfer of
the array for the matrix A, and the elapsed
time for calculation of the LU decomposi-
tion with complete pivoting was also re-
duced.
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