
Toward a High-Performance Batched Quantum Circuit

Simulator for Heterogeneous Architectures
Koki Kawamura1, Kazuki Yamauchi1, Yuki Nakaya1, Ryo Matsumoto1,

Keichi Takahashi1, Toshio Mori1,2, Yasunari Suzuki2, Keisuke Fujii1,2

1The University of Osaka 2RIKEN Center for Quantum Computing k-koki@ist.osaka-u.ac.jp

Background

Our Contribution

We present a new high-performance state-vector-type simulator supporting

batch simulation on both CPU and GPU.

Supporting Heterogeneous Architectures

• Quantum circuit simulators (e.g., Qulacs[S+21], cuQuantum[B+23]) are widely utilized for quantum computing research.

• State-vector simulation is a prominent approach, which stores 𝑛-qubit quantum states as 2𝑛-length complex vector.

• Multiple parallel computing architectures (e.g., SIMD, OpenMP, CUDA) are typically used.

• Batch execution of quantum circuits: simulate multiple quantum circuits which share the same structure.

• Writing code in multiple architectures makes software maintenance difficult and increases the risk of bugs.

• Only few simulators support high-performance batch execution.

• We utilize Kokkos[T+22], a parallel programming library for CPU and

GPU from a single codebase with minimum divergence.

• This abstraction imposes almost no overhead as original functions

are inline-expanded into the device function for each architecture.

References
[B+23] Harun Bayraktar et al. cuQuantum SDK: A High-Performance Library for Accelerating Quantum Science, 2023 IEEE International Conference on Quantum Computing and Engineering (QCE).

[S+21] Yasunari Suzuki et al. Qulacs: a fast and versatile quantum circuit simulator for research purpose. Quantum, 5:559, October 2021.

[T+22] Christian R. Trott et al. Kokkos 3: Programming model extensions for the exascale era. IEEE Transactions on Parallel and Distributed Systems, 33(4):805–817, 2022

[J+24] Ali Javadi-Abhari et al. Quantum computing with Qiskit. arXiv:2405.08810.

[S+24] Marco Sciorilli et al. Towards large-scale quantum optimization solvers with few qubits. arXiv preprint arXiv:2401.09421.

下にスクロールしすぎて次のスライドに行くのを防
止するためだけのオブジェクト

𝒂𝟎𝟎 𝟎𝟎 + 𝒂𝟎𝟏 𝟎𝟏 + 𝒂𝟏𝟎 𝟏𝟎 + 𝒂𝟏𝟏 𝟏𝟏

𝒂𝟎𝟎

𝒂𝟎𝟏

𝒂𝟏𝟎

𝒂𝟏𝟏

State-vector Method

Batch Execution of Quantum Circuit

Simulate these

circuits in parallel

Main controller (CPU)

Controlling

Functions
Object

Pointers

Python User

Interface

Executing Space (CPU or GPU)

High-performance

Computational Kernels

𝐷𝑒𝑛𝑠𝑒
𝑀𝑎𝑡𝑟𝑖𝑥

Dense/Sparse Matrix

Quantum Gates

𝜓 =

𝑎
𝑏
⋮

State Vector

Data

Allocate State Vector

Call Computational

Kernels

Transfer Result

Enabling Batch Execution

𝒂𝟎𝟎𝒂𝟎𝟏𝒂𝟏𝟎𝒂𝟏𝟏𝒃𝟎𝟎𝒃𝟎𝟏𝒃𝟏𝟎𝒃𝟏𝟏𝒄𝟎𝟎 𝒄𝟎𝟏 𝒄𝟏𝟎 𝒄𝟏𝟏

Kokkos::parallel_for(Kokkos: RangePolicy<Space>(0, n),
KOKKOS_LAMBDA(int i) {…});

#pragma omp parallel for

for(int i = 0; i < n; i+:)
{…}

__device__ void func() {

 int i = …; …

}

Abstraction using C++ templates and macros

OpenMP function CUDA function

Call architecture-specific

functions

Although 𝑅𝑌 𝛼 is written as
σ𝑘 𝑅𝑌 𝛼𝑘 ⊗ 𝑘 𝑘 in more precise form,

we can regard this as simple RY gate where
rotation angle vary by batch index.

• 𝑛-qubit state vectors of batch size 2𝑚 is allocated with the same

structure as a (𝑛 + 𝑚)-qubit state vector.

• We can simulate bathed quantum circuits in the same way as

normal state vector even if the batch size is not a power of 2.

(single for-loop for OpenMP, 1D thread parallelization for CUDA)

Performance Evaluation

1. Single State Vector Update

• CPU: Intel Xeon Platinum 9242 x 2 sockets (2.30GHz, 96 cores), GPU: NVIDIA A100 40 GB

• Method: Benchmark execution time to apply CX, RX and RZ gates (averaged over every target qubit)

• Compared to Qulacs[S+21], cuQuantum[B+23], and Qiskit-Aer[J+24]

GPU result

2. Batched State Vector Update

Conclusion & Future Work
• We developed a state-vector-type quantum circuit simulator which work on both CPU and GPU.

• Our simulator also features batch execution of circuits.

• Our simulator performs as well as the fastest existing simulator.

• We are planning to support diverse platforms such as AMD and Intel GPUs and release our

simulator officially in the future.

Learn More

GitHub: https://github.com/qulacs/scaluq

Python Tutorial: https://scaluq.readthedocs.io/en/latest/tutorials/python/index.html

Posting any issues (questions /

bug reports / feature requests) is

welcome!

This work was supported by the

JST COI-NEXT Program Grant

No. JPMJPF2014.

Acknowledgment

CPU result varying batch size (#qubits=16)

varying #qubits (batch size=100)

Advanced Usage

Our simulator shows 6.8x speed-up

compared to Qulacs in a practical usage.

Task: solve maximum cut problem by

PCE (Pauli Correlation Encoding) [S+24].

Each iteration consists of gradient

calculations of expectation values for

parametric circuits.

Circuit size details:

• 13-qubit circuit

• 10,400 parametric gates

• 800 Pauli-term observable

Equivalent to
cuStateVec

Equivalent to
cuStateVec at
#qubits ≥ 14

Up to 2.8x faster
than cuStateVec at
#qubits≤11

Almost equivalent to the fastest
(Qulacs, cuStateVec)

A little slower than cuStateVec
at #qubits=19, 20

A little faster than cuStateVec
at #qubits≤17

Qiskit-Aer is faster than others
at #qubits=26

Our simulator is the fastest at
#qubits≤18 (can be much
faster by disabling OpenMP)

OMP threads Qulacs (it/s) Proposal (it/s)

4 1.54 7.40

8 1.53 9.30

16 1.46 9.96

32 1.30 6.70

𝜶 𝟎 𝟎 + 𝜷 𝟎 𝟏 + 𝜸 𝟏 𝟎 + 𝜹 𝟏 𝟏
𝜶 𝜷
𝜸 𝜹

https://github.com/qulacs/scaluq
https://scaluq.readthedocs.io/en/latest/tutorials/python/index.html

	各チーム発表概要
	Slide 0

