Toward a High-Performance Batched Quantum Circuit
Simulator for Heterogeneous Architectures

Koki Kawamura', Kazuki Yamauchi', Yuki Nakaya', Ryo Matsumoto’, ?
Keichi Takahashi', Toshio Mori'2, Yasunari Suzuki2, Keisuke Fuijii?-2 @QIQIB o
THE UNIVERSITY OF
The University of Osaka 2RIKEN Center for Quantum Computing k-koki@ist.osaka-u.ac.jp OSAKA RIK=N
State-vector Method
Background v
+ Quantum circuit simulators (e.g., Qulacs!$*2'l cuQuantum[B+23l) are widely utilized for quantum computing research. “"*" " %™ @l T el (53)
« State-vector simulation is a prominent approach, which stores n-qubit quantum states as 2"-length complex vector.

0)(0] + BIOX1] + ¥|1)(0] + &]1)(1 « B
 Multiple parallel computing architectures (e.g., SIMD, OpenMP, CUDA) are typically used. ORI PO DB b v)
 Batch execution of quantum circuits: simulate multiple quantum circuits which share the same structure.

* Writing code in multiple architectures makes software maintenance difficult and increases the risk of bugs. Batch Execution of Quantum Circuit
* Only few simulators support high-performance batch execution.
’ RY (ay) Z
Our Contribution g —
. . . Simulate these 1)) L) l .
We present a new high-performance state-vector-type simulator supporting circuits in parallel - {5 Ml
batch simulation on both CPU and GPU. w{TETT
— Supporting Heterogeneous Architectures Enabling Batch Execution
» We utilize Kokkosl™22], a parallel programming library for CPU and » n-qubit state vectors of batch size 2™ is allocated with the same
GPU from a single codebase with minimum divergence. structure as a (n + m)-qubit state vector.
* This abstraction imposes almost no overhead as original functions « We can simulate bathed quantum circuits in the same way as
are inline-expanded into the device function for each architecture. normal state vector even if the batch size is not a power of 2.
Kokkos :: parallel_for(Kokkos :: RangePolicy<Space>(0, n), (single for-loop for OpenMP, 1D thread parallelization for CUDA)

KOKKOS_LAMBDA(int i) {..});

Abstraction using C++ templates and macros

/Call architegture-specific 4,) {_ BY (o) l 2 (— RY (o) l Z
m functions ’ A
&—{ 125, b 70
#tpragma omp parallel for __device__ void func() { — TRY(a)) ~ S 1k
for(int i = 0; i < n; i+) int i = .; . W{ l 7T .
(.} } 1
OpenMP function CUDA function E E \
- Main controllerﬂ(CPU) gzﬁcca:nstuat:etl\;:tlor— Executing Space (CPU or GPU) —] — R (e) > Although RY (@) is written as
P <> ? Kernels P Dense [Wom_1) { l Yx RY (@) & |k)(k| in more precise form,
- Matrix DO— RZ(Bym_1) [— we can regard this as simple RY gate where
Python User Contr?lling Object < High-performance State Vector Dense/Sparse Matrix rotation angle vary by batch index.
Interface Functions Pointers Transfer Result Computational Kernels Data Quantum Gates
— Performance Evaluation Advanced Usage
« CPU: Intel Xeon Platinum 9242 x 2 sockets (2.30GHz, 96 cores), GPU: NVIDIA A100 40 GB Our simulator shows 6.8x speed-up
» Method: Benchmark execution time to apply CX, RX and RZ gates (averaged over every target qubit) compared to Qulacs in a practical usage.
« Compared to Qulacs!s*21l, cuQuantumlB*23l, and Qiskit-Aerl/*24]
_ Task: solve maximum cut problem by
1. Single State Vector Update 2. Batched State Vector Update

PCE (Pauli Correlation Encoding)S*24],

102

£ —— Proposal 516_ —4— cuStateVec OMP threads |Qulacs (it/s) Proposal (it/s)
S == Q_UIa,CS _5 —+— Proposal
g 100 " Qiskit-Aer g 4 1.54 7.40
: 2 . 8 1.53 9.30
5 <4 16 1.46 9.96
S 107 Bt - YD i B R B 32 1.30 6.70
Number of qubits ° >0 Nur%ggr of blaE:c(c)hes 20 20
: : : Each iteration consists of gradient
CPU resulit varying batch size (#qubits=16) | | J
Z calculations of expectation values for
.| —— Proposal Ht]]]
P o Quiacs 10 7 Ef;ii?lec parametric circuits.

—+— cuStateVec

1000 T Qiskit-Aer

Circuit size details:

10714

* 13-qubit circuit

Execution time per iteration [ms]

10724 ; ; '
5 10 15 20
Number of qubits

Execution time per iteration [ms

10,400 parametric gates

"4 6 8 10 12 14 16 18 20 22 24
Number of qubits

GPU result varying #qubits (batch size=100)

« 800 Pauli-term observable

— Conclusion & Future Work Learn More

 We developed a state-vector-type quantum circuit simulator which work on both CPU and GPU.
Posting any issues (questions /

bug reports / feature requests) is
welcome!

* Our simulator also features batch execution of circuits.
 QOur simulator performs as well as the fastest existing simulator.

 We are planning to support diverse platforms such as AMD and Intel GPUs and release our GitHub: https://aithub.com/aulacs/scalug
SimUIator OffICIa”y in the fUture Python Tutorial: https://scaluq.readthedocs.io/en/latest/tutorials/python/index.html

- Acknowledgment References

. [B+23] Harun Bayraktar et al. cuQuantum SDK: A High-Performance Library for Accelerating Quantum Science, 2023 IEEE International Conference on Quantum Computing and Engineering (QCE).
ThlS Work was Supported by the [S+21] Yasunari Suzuki et al. Qulacs: a fast and versatile quantum circuit simulator for research purpose. Quantum, 5:559, October 2021.
JST COI-NEXT Prog ram Grant [T+22] Christian R. Trott et al. Kokkos 3: Programming model extensions for the exascale era. IEEE Transactions on Parallel and Distributed Systems, 33(4):805-817, 2022
[J+24] Ali Javadi-Abhari et al. Quantum computing with Qiskit. arXiv:2405.08810.
No. JPMJPF2014.

[S+24] Marco Sciorilli et al. Towards large-scale quantum optimization solvers with few qubits. arXiv preprint arXiv:2401.09421.

https://github.com/qulacs/scaluq
https://scaluq.readthedocs.io/en/latest/tutorials/python/index.html

	各チーム発表概要
	Slide 0

