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State-vector Method
Background v
+ Quantum circuit simulators (e.g., Qulacs!$*2'l cuQuantum[B+23l) are widely utilized for quantum computing research. “"*" " %™ @l T el (53)
« State-vector simulation is a prominent approach, which stores n-qubit quantum states as 2"-length complex vector.
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 Multiple parallel computing architectures (e.g., SIMD, OpenMP, CUDA) are typically used. ORI PO DB b v )
 Batch execution of quantum circuits: simulate multiple quantum circuits which share the same structure.

* Writing code in multiple architectures makes software maintenance difficult and increases the risk of bugs. Batch Execution of Quantum Circuit
* Only few simulators support high-performance batch execution.
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Our Contribution g —
. . . Simulate these 1)) L) l .
We present a new high-performance state-vector-type simulator supporting circuits in parallel - {5 Ml
batch simulation on both CPU and GPU. w{TETT
— Supporting Heterogeneous Architectures Enabling Batch Execution
» We utilize Kokkosl™22], a parallel programming library for CPU and » n-qubit state vectors of batch size 2™ is allocated with the same
GPU from a single codebase with minimum divergence. structure as a (n + m)-qubit state vector.
* This abstraction imposes almost no overhead as original functions « We can simulate bathed quantum circuits in the same way as
are inline-expanded into the device function for each architecture. normal state vector even if the batch size is not a power of 2.
Kokkos :: parallel_for(Kokkos :: RangePolicy<Space>(0, n), (single for-loop for OpenMP, 1D thread parallelization for CUDA)

KOKKOS_LAMBDA(int i) {..});

Abstraction using C++ templates and macros
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#tpragma omp parallel for __device__ void func() { — TRY(a)) ~ S 1k
for(int i = 0; i < n; i+) int i = .; . W{ l 7T .
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- Main controllerﬂ(CPU) gzﬁcca:nstuat:etl\;:tlor— Executing Space (CPU or GPU) —] — R (e ) > Although RY (@) is written as
P <> ? Kernels P Dense [Wom_1) { l Yx RY (@) & |k)(k| in more precise form,
- Matrix DO— RZ(Bym_1) [— we can regard this as simple RY gate where
Python User Contr?lling Object < High-performance State Vector Dense/Sparse Matrix rotation angle vary by batch index.
Interface Functions Pointers Transfer Result Computational Kernels Data Quantum Gates
— Performance Evaluation Advanced Usage
« CPU: Intel Xeon Platinum 9242 x 2 sockets (2.30GHz, 96 cores), GPU: NVIDIA A100 40 GB Our simulator shows 6.8x speed-up
» Method: Benchmark execution time to apply CX, RX and RZ gates (averaged over every target qubit) compared to Qulacs in a practical usage.
« Compared to Qulacs!s*21l, cuQuantumlB*23l, and Qiskit-Aerl/*24]
_ Task: solve maximum cut problem by
1. Single State Vector Update 2. Batched State Vector Update

PCE (Pauli Correlation Encoding)S*24],
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Circuit size details:
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— Conclusion & Future Work Learn More

 We developed a state-vector-type quantum circuit simulator which work on both CPU and GPU.
Posting any issues (questions /

bug reports / feature requests) is
welcome!

* Our simulator also features batch execution of circuits.
 QOur simulator performs as well as the fastest existing simulator.

 We are planning to support diverse platforms such as AMD and Intel GPUs and release our GitHub: https://aithub.com/aulacs/scalug
SimUIator OffICIa”y in the fUture Python Tutorial: https://scaluq.readthedocs.io/en/latest/tutorials/python/index.html
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