
Enabling Rank- and Iteration-Level
Approximate Computing on HPC Applications*†

Yasutaka WADA (Meiji Gakuin University), Yoshiyuki MORIE (Teikyo University)
Ryohei KOBAYASHI (Science Tokyo), and Ryuichi SAKAMOTO (Science Tokyo)

Approximate Computing (AC) for HPC Systems/Applications

Future Work for More Effectiveness with Fine-Grained and Dynamic AC
n Need to To utilize compiler techniques to analyze applications and to apply dynamic AC
u Provide a performance/accuracy model for each part of the app
u (Semi-)automatic application restructuring for iteration- and rank-level AC simultaneously

n Need to adjust data precision automatically and to select appropriate device(s) to be used
u Based on the performance models and characteristics of available devices

Our Approaches to Realize Dynamic Approximate Computing

[1] Yasutaka Wada, Yoshiyuki Morie, Ryohei Kobayashi, Ryuichi Sakamoto, “Enabling Dynamic Approximate Computing for HPC Applications”, Journal of Information Processing, Vol.33, pp.668-674, Oct., 2025.
[2] Yasutaka Wada, et al., “Proposal and Preliminary Evaluation of Iteration-Level Approximate Computing Method”, IPSJ SIG Technical Report, Vol. 2025-HPC-199, No. 6, pp. 1-5, May, 2025. (in Japanese)
[3] Y. Morie, et al., “Preliminary Evaluation Toward Performance Modeling of High-Throughput Asynchronous Group Communication”, IPSJ SIG Technical Report, Vol. 2023-HPC-198, No. 49, pp. 1-6, Mar., 2025. (in Japanese)

Enabling Iteration-Level AC and Communication Overlap for Dynamic AC

n References: 

Barrier

Barrier

Rank i Rank j

C
om

pu
te

 in
 d

ou
bl

e

C
om

pu
te

 in
 d

ou
bl

e
W

ai
t

Barrier

Barrier

Rank i Rank j

C
om

pu
te

 in
 fl

oa
t

C
om

pu
te

 in
 d

ou
bl

e
Performance Gain by AC

a) w/o AC b) w/ AC

Ti
m

e

Data Transfer
float -> double

Data Transfer
double -> float

Data Transfer
double -> double

Data Transfer
double -> double

1.00 

0.32 

1.00 

0.74 

1.00 

0.67 

1.00 1.09 1.00 

2.65 

0.99 1.00 
1.24 

1.00 1.00 

0.60 

1.00 

0.50 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

or
ig

in
al

 (f
)

f -
>

 d

or
ig

in
al

 (f
/d

)

f -
>

 d

or
ig

in
al

 (f
)

f -
>

 d

or
ig

in
al

 (f
)

f -
>

 d

or
ig

in
al

 (f
)

f -
>

 d

or
ig

in
al

 (d
)

d 
->

 f

or
ig

in
al

 (d
)

d 
->

 f

or
ig

in
al

 (f
)

f -
>

 d

or
ig

in
al

 (f
)

f -
>

 d

backprop cfd hotspothotspot3Dkmeans LavaMD leucoyte lud nn

Sp
ee

du
p 

ag
ai

ns
t

Ex
ec

ut
io

n 
w

ith
 fl

oa
t

Applications and Data Types

Higher Performance
with Higher Precision

Lower Performance
with Higher Precision

→ Needs for Appropriate Approximate Computing for HPC

n Iteration-Level AC to utilize temporal characteristics of apps.
u Especially for convergence and time-development loops
u Adjust data precision according to the computation progress
p Start with higher precision to stabilize following iterations
p Utilize lower precision to accelerate the execution
p Finalize with higher precision to obtain results accurate enough

u Need to keep the results valid for the data type being used
n Rank-Level AC can be Effective with Communication Overlap
u Changing data precision while operating a data transfer takes much cost
p In terms of both performance and programming/coding

u Need simple APIs enable changing data precision within data transfer
p Requires consideration on memory bandwidth

u Need to model the data transfer cost with the proposed APIs
p To realize more effective overlap between data transfer and computation

*This research was supported in part by Multidisciplinary Cooperative Research Program in CCS, University of Tsukuba, and KAKENHI Grant No. 23K11056 & 25K15141.

for (iter = 0; iter < N; iter++) {

}

Computation
mainly in FP64

for (iter = 0; iter < L; iter++) {

}
Computation in FP64

for (; iter < M; iter++) {

}
Computation in FP32

for (; iter < N; iter++) {

}
Computation in FP64

Data copy with cast
FP64 → FP32

Data copy with cast
FP32 → FP64

For Better
Initialization

For Fast
Computation

For Result
Accuracy

Rank-Level AC [1]Iteration-Level AC [1]

Performance Ratio of the Proposed APIs
against Data Transfer with double/FP64 [1]

n Utilize both spatial and temporal structure in HPC applications dynamically
n Rank-Level AC: Each rank can run with its own data precision
n Iteration-Level AC: Enable to change data precision according to computation progress

n Approximate computing optimizes the tradeoff among performance/energy/accuracy
u Effective for applications robust to smaller data precision
p Image processing, Deep learning, etc.

n Most HPC applications require higher precision to obtain accurate computation results
u Robustness/Sensitivity to data precision depends on their algorithms and structures
p May give better performance with higher precision

Required Techniques
to Realize Dynamic AC

・Data precision suitable for the Application
・Low Overhead Data Precision Adjustment
・Communication among Nodes
・Utilizing Accelerators
・etc…

Dynamic Approximate Comp.

Relationship
between Data Precision

and Performance
Overhead for Data 

Precision Adjustment

Application Structure
and Sensitivity

for Data Precision

Device Characteristics

Application
Analysis

Data Transfer
Optimization

System
Software

Utilizing
Accelerators

0.00

0.20

0.40

0.60

0.80

1.00

1.20

10
-1
0-
80

10
-2
0-
70

10
-3
0-
60

10
-4
0-
50

20
-1
0-
70

20
-2
0-
60

20
-3
0-
50

20
-4
0-
40

30
-1
0-
60

30
-2
0-
50

30
-3
0-
40

30
-4
0-
30

40
-1
0-
50

40
-2
0-
40

40
-3
0-
30

40
-4
0-
20

Re
la
ti
ve
 C
om
pu
ta
ti
on
 T
im
e 
ag
ai
ns
t 

Or
ig
in
al
 N
PB
-C

G 
(F
P6
4,
 -
Of
as
t)

Iteration Allocation (FP64 - FP32 - FP64)

-Ofast -Ofast -Mnodaz

0

1

3

2

4

5

HPC
Apps.

Evaluation
Analysis

Accuracy

Pe
rf

or
m

an
ce

Precision?
Device?

Modeling

†This poster is based on [1] Yasutaka Wada, et al., “Enabling Dynamic Approximate Computing for HPC Applications”, Journal of Information Processing, Vol.33, pp.668-674, Oct., 2025.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

10
-1
0-
80

10
-2
0-
70

10
-3
0-
60

10
-4
0-
50

20
-1
0-
70

20
-2
0-
60

20
-3
0-
50

20
-4
0-
40

30
-1
0-
60

30
-2
0-
50

30
-3
0-
40

30
-4
0-
30

40
-1
0-
50

40
-2
0-
40

40
-3
0-
30

40
-4
0-
20

Re
la
ti
ve
 C
om
pu
ta
ti
on
 T
im
e 
ag
ai
ns
t 

Or
ig
in
al
 N
PB
-C
G 
(F
P6
4,
 -
Of
as
t)

Iteration Allocation (FP64 - FP32 - FP64)

-Ofast -Ofast -CORE-AVX512

Performance Evaluation for Iteration-Level AC 
with NPB-CG [1]

0.00

0.20

0.40

0.60

0.80

1.00

1.20

10
-1
0-
80

10
-2
0-
70

10
-3
0-
60

10
-4
0-
50

20
-1
0-
70

20
-2
0-
60

20
-3
0-
50

20
-4
0-
40

30
-1
0-
60

30
-2
0-
50

30
-3
0-
40

30
-4
0-
30

40
-1
0-
50

40
-2
0-
40

40
-3
0-
30

40
-4
0-
20

Re
la

ti
ve

 C
om

pu
ta

ti
on

 T
im

e 
ag

ai
ns

t 

Or
ig

in
al

 N
PB

-C
G 

(F
P6

4,
 -

Kf
as

t)

Iteration Allocation (FP64 - FP32 - FP64)

-Kfast -Kfast-Kfz

(a) On Miyabi-G

(b) On Pegasus

(c) On Wisteria

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
83
4
32
76
8
65
53
6

13
10
72

26
21
44

52
42
88

10
48
57
6

20
97
15
2

41
94
30
4

83
88
60
8

16
77
72
16

Pe
rf
or
ma
nc
e 
Ra
ti
o

Message Counts

Wisteria Pegasus Miyabi-G

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

16
77

72
16

33
55

44
32

67
10

88
64

13
42

17
72

8

Pe
rf

or
ma

nc
e 

Ra
ti

o

Message Counts

Execution Time

Estimation Time

Data Transfer Performance on Miyabi-G:
Estimation v.s. Measurement [1]


