A Comparison Between a GPU-Based Method
for Combinatorial Optimization
and the Fixstars Amplify Annealing Engine i Noborio

Background and Objectives

Combinatorial optimization problems, such as QUBO and QAP,

play a critical role in many real-world applications, including
logistics, scheduling, and circuit layout
As problem sizes increase, achieving sufficient performance

with conventional sequential computing becomes increasingly

difficult

Recently, specialized hardware platforms such as Ising
machines and quantum annealers have attracted significant

attention

Meanwhile, the massive parallelism of general-purpose GPUs
offers the potential to achieve high performance without relying

on specialized hardware

The objective of this study is to develop a fast and accurate
combinatorial optimization solver using general-purpose GPUs
and to compare its performance with the Fixstars Amplify

Annealing Engine (AE)

Experimental Setup

Fixstars Amplify Annealing Engine (AE) is adopted as the

baseline solver

Official benchmark statistics publicly released by Fixstars

are used for comparison

(https://amplify.fixstars.com/benchmark/#/clients/Fix

starsClient)

To ensure fair comparison, the GPU is fixed to NVIDIA

A100 across all experiments

Each benchmark instance is evaluated using 20 or 100

independent runs

« The number of runs is matched to the evaluation

conditions reported by Fixstars

« Under identical execution-time
constraints, the proposed
method achieves higher-
accuracy solutions than Amplify
AE for larger problem instances

« For the QAP benchmark sk056,
a 943 x speedup in TTS(1%) is
observed

« The performance gap between
the proposed method and
Amplify AE becomes more
pronounced as the problem size
Increases

 The convergence behavior is

found to depend on the problem

type and the implementation of

neighborhood search

* In particular, TSP exhibits
rapid convergence in the later
stages of the search
compared to QAP

Results and Discussion

Table 1: Comparison of the Proposed GPU Solver with Fixs-
tars Amplify AE on TSP Instances

The Proposed Method

The proposed solver is based on Simulated Annealing (SA)
 SA enables escape from local optima by probabilistically accepting
worse solutions
* |n this study, SA is designed for GPU execution based on the
following principles
* A Specified Time parameter is introduced to explicitly control the
program execution time
 The temperature schedule is automatically adjusted according to
the specified execution time
« To fully exploit GPU parallelism, multiple SA replicas are executed
concurrently
« All replicas share a common temperature during the search
Process
« For neighborhood search, the simplest 2-opt operation is employed
for both TSP and QAP instances

Future Works

Application to a broader range of combinatorial optimization problems and
benchmark instances

Systematic comparison with optimization solvers developed by other
companies and research institutions

Further improvement and acceleration of both the algorithm and GPU
implementation

Extension to large-scale problems motivated by real-world applications
We are currently developing a solver that solves combinatorial optimization
problems by specifying only the problem type, instance, and execution time
The solver is designed to be usable without any GPU programming expertise,
requiring only a compatible GPU and its driver

The range of supported problem classes is being continuously expanded
toward practical deployment

Specified Amplity AE Proposed GPU Solver
Instance = S -
Ime[s] | %best err I'TS[ms] %best err I'TS[ms]|
burma14 1 0 78(0%) 0 372(0%)
ulysses16 3 0 168(0%) 0 1447(0%)
bayg29 3 0 151(0%) 0 2920(0%)
eil51 30 0 3034(0%) 0 30464(1%)
kroA100 120 0 60234(1%) 0.36 116489(2%)
pr124 1000 0.87 33285129(1%) 0.06 984567 (1%)
pr136 1000 1.39 675340(5%) 0.61 1020789(1%)
pri44 1000 1.81 705390(5%) 0.10 971038(1%)
s1175 1000 0.63 70149275(1%) 0.12 883881(1%)
pr299 1000 41.2 15243078(50%) 1.35 991149(5%)

Table 2: Comparison of the Proposed GPU Solver with Fixs-
tars Amplify AE on QAP Instances

Specified Amplify AE Proposed GPU Solver

Instance . . I
Ime|s| | %best err ['TS|ms]| %best err TTS|ms]|
chril2a 1 (0 73.50(0%) () 685(0%)
chr18a 1 0 127.0(0%) () 1605(1%)
escila 30 0 1526(0%) () 537(5%)
sko56 30 .39 839380(1%) 0.01 889(1%)
sko100a 120 1.40 68994 (5%) 0.08 1666(1%)

Notes

« err denotes the relative error, where err =0
indicates that the optimal solution has been

reached

« TTS (Time to Solution) represents the time required
to reach the specified relative error with 99%
probability, assuming that the time to solution
follows a normal distribution

Noriyki Fujimoto

——&— Proposed Solver (average)
20000 - — 5% Relative Error
— Best Known
80000 -
@ :
= Amplify AE
(17
-
@
= 70000 4
!
L)
2
0
o
60000 -
50000 4
5 x 102 6 x 102 7 % 102 8x 102 9x10¢ 1p3
_ _ Wall-clock Time (s5)
Figure.l :Comparison Between the Proposed GPU
Solver and Fixstars Amplify AE on “pr299”
—&— Proposed Solver (average)
35200 1 —— 19 Relative Error
— Best Known
S Amplify AE
5 35000 -
©
2 34900 -
o
2
© 34800
2
0
..__
34600 7 M
avg
34500 A min
3 x 103 10* 3 x 10*

Wall-clock Time (ms)

Figure.2 :Comparison Between the Proposed GPU
Solver and Fixstars Amplify AE on “skob56”

	スライド 1

