
Overview
As deep learning models continue to scale, improving inference efficiency has become 
increasingly important, driving the development of specialized accelerators for deep 
learning workloads. However, it remains unclear whether GPU-oriented optimization 

strategies, such as increasing batch size, are also effective on domain-specific 
accelerators like MN-Core 2.  In this study, we evaluate the batch-size dependence of 

inference performance for ResNet50 on MN-Core 2 and compare it with publicly 
available NVIDIA V100 GPU benchmarks. Latency and throughput were measured for 
batch sizes ranging from 1 to 16.  Our results show that MN-Core 2 achieves nearly 

peak throughput at a batch size of 4, reaching approximately 90% of the maximum 
throughput observed at a batch size of 16, while latency increases almost linearly. In 

contrast, the V100 exhibits substantial throughput gains with increasing batch size. 
These findings indicate that GPU-oriented batch-size scaling strategies do not directly 

apply to MN-Core 2 and highlight the need for accelerator-specific inference 
optimization guidelines.
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Experimental Setup
➢ Target model: ResNet50 v1.5

➢ Compared platforms: 

➢ MN-Core 2 (domain-specific AI accelerator)

➢ NVIDIA V100 (general-purpose GPU) [3]

➢ Batch sizes: 

➢ 1, 2, 4, 8, and 16

➢ Metrics: 

➢ Latency (processing time (sec) per batch)

➢ Throughput (images/sec)

➢ MN-Core 2:

➢ Precision: FP16 (AMP, automatically converted from FP32 by MLSDK v0.2)

➢ Framework: PyTorch (resnet50.tv_in1k, timm)

➢ GPU reference:

➢ NVIDIA V100 publicly available inference benchmark [3]

➢ Precision: FP32

➢ Framework: TensorFlow

➢ Note: 

➢ Due to differences in numerical precision and software frameworks 
between MN-Core 2 and the GPU benchmark, our comparison focuses on 
batch-size scaling trends rather than absolute performance values.

Results: Latency & Throughput Scaling

➢ The early saturation of throughput on MN-Core 2 is likely related to its 
synchronous execution model, in which all processing elements execute a single 
instruction stream.

➢ Unlike GPUs with hardware-level schedulers, instruction generation and data 
placement on MN-Core 2 are managed by the MLSDK software stack, which may 
limit the performance benefits of larger batch sizes.

➢ These architectural and software characteristics suggest that GPU-oriented 
inference optimization strategies, particularly batch-size scaling, do not directly 
apply to MN-Core 2, highlighting the need for accelerator-specific optimization 
guidelines.

Discussion & Interpretation

➢ Further optimize the MLSDK software stack to better exploit MN-Core 2 
hardware resources.

➢ Extend the evaluation to additional models and workloads to establish general 
accelerator-specific inference optimization guidelines.
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Figure 2: MN-Core 2 Architecture

Experimental Setup

Figures 4 and 5 show the latency and throughput of ResNet50 inference on

MN-Core 2 and an NVIDIA V100 GPU as a function of batch size.

Key observations:

➢ MN-Core 2:

➢ Latency increases almost linearly with batch size

➢ Throughput shows only limited improvement as batch size increases

➢ At batch size 4, throughput already exceeds 90% of the maximum 
observed at batch size 16

➢ NVIDIA V100 GPU:

➢ Throughput increases substantially with batch size

➢ Batch-size scaling is effective in improving throughput

Results: Latency & Throughput Scaling

Key architectural characteristics:

➢ Deep-learning-specific processor optimized for computation-intensive workloads

➢ High ratio of transistors allocated to arithmetic units (7.4%) [1]

➢ Synchronous execution across all Processing Elements (PEs) 

➢ Single instruction stream generated by the host CPU

➢ Efficient exploitation of data parallelism

➢ Hierarchical local-memory structure

➢ Frequently reused data kept on chip, reducing external memory access

➢ MLSDK software stack

➢ Mapping computations, data placement, and instruction generation

➢ Performance strongly depends on software optimization

Figure 1: MN-Core 2 [2]
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Figure 3: ResNet Architecture

➢ MN-Core 2 achieves near-peak inference throughput at small batch sizes, with 
throughput saturating early compared to GPU-based execution.

➢ This result demonstrates that GPU-oriented inference optimization strategies, 
particularly batch-size scaling, do not directly apply to MN-Core 2, highlighting 
the importance of accelerator-specific optimization approaches.

Conclusion

Figure 4: Latency scaling on MN-Core 2 (FP16) 
and NVIDIA V100 (FP32) for ResNet50 v1.5. 

Figure 5: Throughput scaling on MN-Core 2 (FP16) 
and NVIDIA V100 (FP32) for ResNet50 v1.5. 

Latency increases almost 
linearly with batch size, 

indicating limited latency hiding 
on MN-Core 2

Throughput remains above 
90% of the maximum from 

batch size 4 onward

Throughput continues to scale
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