

Thomas DUMONTIER

Stéphane LOUISE

Université Paris-Saclay

Université Paris-Saclay

CEA, List, F-91120, Palaiseau, France

CEA, List, F-91120, Palaiseau, France

0009-0005-6388-6288

0000-0003-4604-6453

Background and Motivation

- Principal component analysis (PCA) is a fundamental method for dimensionality reduction and feature extraction
- Quantum PCA promises compact representations in high-dimensional or implicit feature spaces, potentially beyond classical limits.
- Canonical density-matrix exponentiation method for QPCA is impractical on near-term devices.
- Usual Near-Term Variational QPCA methods are unstable for computing multiple PCs:
 - Deflation: Subtracting found principal components accumulates noise.
 - Penalty Terms: $\text{Cost} + \lambda |\langle \psi_0 | \psi_1 \rangle|^2$ often creates local minima.
 - Barren Plateaus: Deep ansatzes fail to train.

Method

We adopted a two loop architecture to decouple the problem and reduce the constraints on the ansatz :

- Loop 1 (Alignment): Rotates the basis to match the data
- Loop 2 (Correlation): Learns the principal subspace within that basis

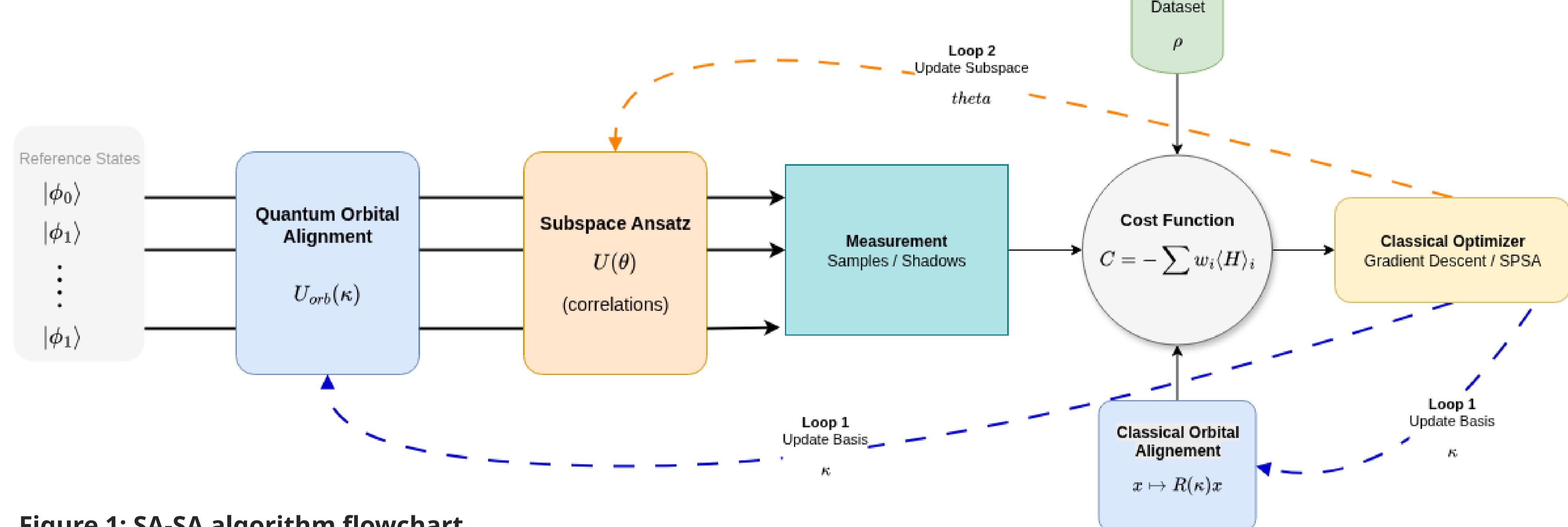


Figure 1: SA-SA algorithm flowchart

Variational Subspace Learning

- We encode the dataset into a covariance operator: $\rho = \frac{1}{N} \sum_i \langle x_i | x_i \rangle$
- We select k orthonormal reference states $|\phi_i\rangle$ and apply a shared variational circuit $U(\theta)$:
 $|\psi_i\rangle = U(\theta)|\phi_i\rangle$
- All components are learned simultaneously by minimizing a state-averaged objective:
 $L(\theta) = -\sum_{i=0}^{k-1} w_i \langle \psi_i | \rho | \psi_i \rangle, w_0 > \dots > w_{k-1}$

Preliminary results

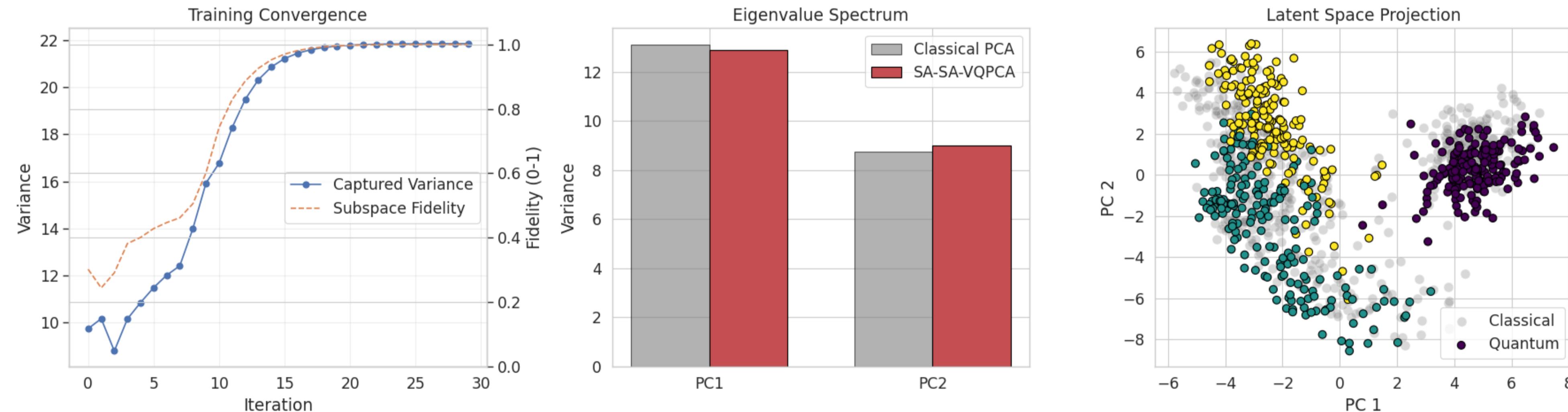


Figure 3: Cost convergence, eigenvalue matching and projection of the test data for the wine dataset

Experiments on Iris, Wine, and MNIST-Digit subsets (4–64 features) using a two-layer hardware-efficient ansatz:

- stable convergence across all datasets,
- automatic orthogonality without deflation,
- improved learning speed when including classical or quantum orbital optimization,
- kernel variant capturing nonlinear structure unavailable to linear PCA

A classifier built on the kernel variant achieves 73% accuracy on PneumoniaMNIST using four qubits,

Idea

We propose state-averaged, variational subspace-learning framework that learns all principal components simultaneously.

Our approach, inspired by the SA-OO method in chemistry, is based on three principles:

- Shared variational circuit:** A single parametrized unitary that generates all components from orthogonal reference states
- State-averaged objective:** All components are optimized together, enforcing orthogonality by construction
- Representation alignment:** A classical or shallow quantum rotation aligns the basis with the learned subspace, reducing circuit depth and improving stability

Subspace alignment

To reduce circuit depth and improve optimization, we adapt the basis representation using either:

- Classical alignment: a rotation $R \in SO(D)$ is applied to the input features
- Quantum alignment: a shallow, data-independent unitary U_{orb}

These alignment layers are shared across all components and updated using gradients from the quantum objective

Alignment simplifies the learning task and improves stability and convergence.

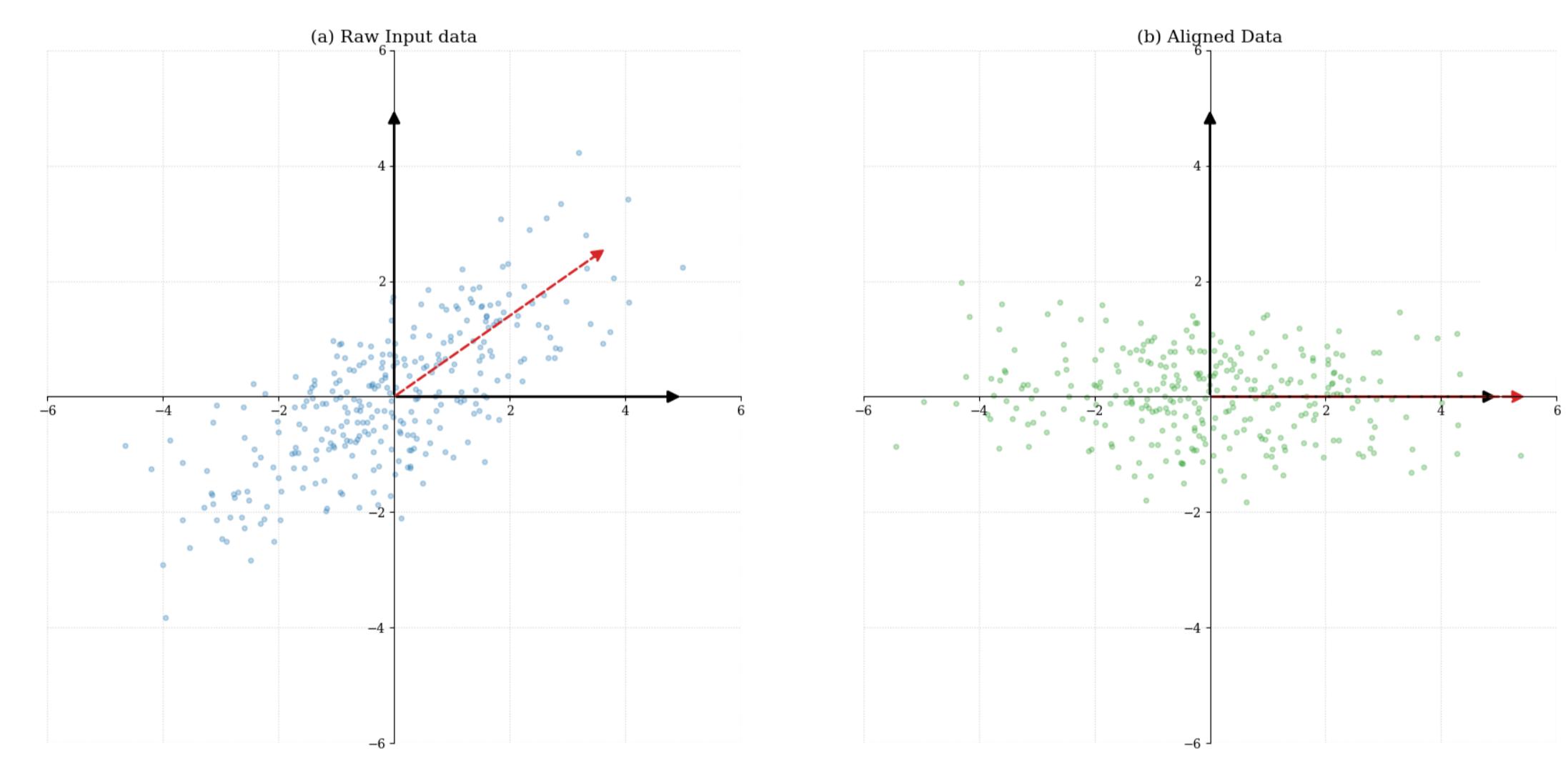


Figure 2: Illustration of the subspace alignment

Extensions and applications

- Kernel PCA via quantum feature maps
- Sparse or structured PCA through constrained generators
- Quantum autoencoders via subspace-based compression
- General variational eigensubspace learning
- Representation learning for quantum machine learning
- Dimensionality reduction in implicit or kernel feature spaces
- Noise-robust subspace extraction on NISQ devices
- Preprocessing for downstream tasks (classification, clustering, or anomaly detection)

References

- [1] S. Lloyd et al. "Quantum principal component analysis," *Nature Physics*, 2014.
- [2] M. Cerezo, et al., and P. Spentzouris. Variational quantum state eigensolver. *Nature Physics*, 18:387–392, 2022.
- [3] H.-Y. Huang et al., "Predicting many properties of a quantum system from very few measurements," *Nature Physics*, 2020.
- [4] S. Yalouz et al., "State-averaged orbital optimization with variational quantum eigensolvers," *PRX Quantum*, 2021.
- [5] Y. Zhang et al., Self-adaptive quantum kernel principal component analysis for compact readout of chemiresistive sensor arrays. *Advanced Science*, 12(15):2405728, 2025.