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Background and Motivation Idea

We propose state-averaged, variational subspace-learning framework that learns all principal

* Principal component analysis (PCA) is a fundamental method for dimensionality reduction and components simultaneously.

feature extraction Our approach, inspired by the SA-OO method in chemistry, is based on three principles:

* Quantum PCA promises compact representations in high-dimensional or implicit feature spaces,

potentially beyond classical limits * Shared variational circuit: A single parametrized unitary that generates all components from

orthogonal reference states

* Canonical density-matrix exponentiation method for QPCA is impractical on near-term devices. .. .. . :
Y P Q P * State-averaged objective: All components are optimized together, enforcing orthogonality by

* Usual Near-Term Variational QPCA methods are unstable for computing multiple PCs: construction

+ Deflation: Subtracting found principal components accumulates noise. * Representation alignment: A classical or shallow quantum rotation aligns the basis with the learned

. subspace, reducing circuit depth and improving stabilit
* Penalty Terms: Cost+A|[(y,|y,)? often creates local minima. P 9 P P 9 y

* Barren Plateaus: Deep ansatzes fail to train.
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Figure 1: SA-SA algorithm flowchart

Variational Subspace Learning Subspace alignment

+ We encode the dataset into a covariance operator: P:%Z (x]x,) To reduce circuit depth and improve optimization, we adapt the basis representation using either:

* We select k orthonormal reference states | i) and apply a shared variational circuit U(6): * Classical alignment: a rotation RES0(D) is applied to the input features
w, =U(6)|¢;] » Quantum alignment: a shallow, data-independent unitary U,,
* All components are learned simultaneously by minimizing a state-averaged objective: These alignment layers are shared across all components and updated using gradients from the
quantum objective
_; Wil Pl Wo> > Wiy Alignment simplifies the learning task and improves stability and convergence.
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Extensions and applications
Figure 3: Cost convergence, eigenvalue matching and projection of the test data for the wine dataset p p
* Kernel PCA via quantum feature maps
* stable convergence across all datasets, e Quantum autoencoders via subspace-based compression
* automatic orthogonality without deflation, * General variational eigensubspace learning
* improved learning speed when including classical or quantum orbital optimization, * Representation learning for quantum machine learning
* kernel variant capturing nonlinear structure unavailable to linear PCA * Dimensionality reduction in implicit or kernel feature spaces

* Noise-robust subspace extraction on NISQ devices

- . . . . . . * Preprocessing for downstream tasks (classification, clustering, or anomaly detection
A classifier built on the kernel variant achieves 73% accuracy on PneumoniaMNIST using four qubits, P J ( 9 y )
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