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State-Averaged Subspace-Aligned 
Variational Quantum PCA

Background and Motivation
● Principal component analysis (PCA) is a fundamental method for dimensionality reduction and 

feature extraction
● Quantum PCA promises compact representations in high-dimensional or implicit feature spaces, 

potentially beyond classical limits.
● Canonical density-matrix exponentiation method for QPCA is impractical on near-term devices.
● Usual Near-Term Variational QPCA methods are unstable for computing multiple PCs:

 Deflation: Subtracting found principal components accumulates noise.
  Penalty Terms: often creates local minima.
 Barren Plateaus: Deep ansatzes fail to train.
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Extensions and applications

Figure 1: SA-SA algorithm flowchart
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Preliminary results

We propose state-averaged, variational subspace-learning framework  that learns all principal 
components simultaneously.

Our approach, inspired by the SA-OO method in chemistry,  is based on three principles:
● Shared variational circuit: A single parametrized unitary that generates all components from 

orthogonal reference states
● State-averaged objective:  All components are optimized together, enforcing orthogonality by 

construction
● Representation alignment: A classical or shallow quantum rotation aligns the basis with the learned 

subspace, reducing circuit depth and improving stability

We adopted a two loop architecture to decouple the problem 
and reduce the constraints on the anzat :

● Loop 1 (Alignment): Rotates the basis to match the data        
● Loop 2 (Correlation): Learns the principal subspace within that 

basis 

● We encode the dataset into a covariance operator: 
● We select    orthonormal reference states |ϕᵢ  and apply a shared variational circuit          : ⟩

● All components are learned simultaneously by minimizing a state-averaged objective:
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Experiments on Iris, Wine, and MNIST-Digit subsets (4–64 features) using a two-layer hardware-efficient ansatz:

●  stable convergence across all datasets,

● automatic orthogonality without deflation,

● improved learning speed when including classical or quantum orbital optimization,

● kernel variant capturing nonlinear structure unavailable to linear PCA

A classifier built on the kernel variant achieves 73% accuracy on PneumoniaMNIST using four qubits,
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To reduce circuit depth and improve optimization, we adapt the basis representation using either:

● Classical alignment: a rotation R SO(D) is applied to the input features∈

● Quantum alignment: a shallow, data-independent unitary 

These alignment layers are shared across all components and updated using gradients from the 
quantum objective

Alignment simplifies the learning task and improves stability and convergence.
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Figure 2: Illustration of the subspace alignment

Figure 3: Cost convergence, eigenvalue matching and projection of the test data for the wine dataset
● Kernel PCA via quantum feature maps
● Sparse or structured PCA through constrained generators
● Quantum autoencoders via subspace-based compression
● General variational eigensubspace learning 
● Representation learning for quantum machine learning
● Dimensionality reduction in implicit or kernel feature spaces
● Noise-robust subspace extraction on NISQ devices
● Preprocessing for downstream tasks (classification, clustering, or anomaly detection)
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