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Problem Formulation: The Gap

To meet the intense computational demands of
Al, manufacturers have developed specialized
hardware, such as NVIDIA's Tensor Cores, to ac -
celerate matrix operations.

However, despite sharing workload character-
istics with Al, scientific computing has yet to
fully leverage these advancements (or requires
painful manual work and expertise).

This research aims to bridge the gap between
Fortran-based scientific computing and Al-
specialized hardware by introducing a novel
compilation path that utilizes the XLA compiler.

Research Scope: The workdistribute Directive

Fortran natively supports array operations as
first-class language constructs. For example,
given arrays X, Y, Z of the same size n, and a
scalar a. AXPY operation could be expressed in:
Z = a *x X + Y
Listing 1. array like syntax

Traditionally, achieving parallelism required ex-
plicit do-loops rewriting within OpenMP:
l$omp target teams distribute parallel do
do 1 = 1, n
Z(1i) = a *x X(i) + Y(1)
end do

Listing 2. OpenMP syntax

However, OpenMP 6.0 standard introduced th
workdistribute directive, enabling automatic paral
lelism for array syntax[1]. Notice the followin
code is exactly the same with Listing 1 except
for the OpenMP directives:

| $omp target teams workdistribute
Z = a *x X + Y
! $omp end target teams workdistribute

Listing 3. workdistribute syntax

Taking Advantage of Al Compiler: The Era of
Configurable Compiler Infrastructure

The modular design of the LLVM/MLIR frame-
work [2], which powers the flang compiler, pro-
vides the flexibility to decouple the frontend
from the backend.
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Figure 1. The Big Picture

This allows us to replace traditional backends
with specialized Al compilers that already offer
highly optimized code generation for GPUs and
other accelerators.
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System Design: Intercept Modern Flang Compilation and OpenMP Runtime

Our custom LLVM/MLIR pass, WorkdistributedITPass, extracts workdistribute regions IR. They are
then transformed into StableHLO and compiled JIT into a kernel binary for the target accelerator:
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Figure 2. The Compilation Architecture

Tensorization: Translate from Fortran IRs to StableHLO

Memory related operations in Fortran IRs like 10ad, designate, apply are transformed to inputs and out-
puts in StableHLO, leaving only compuations of tensors.

Tensorization

omp.workdistribute A — i func.func @kernel (%Z: tensor<f32>, Ya:
ha = fir.load 7,148#0: £32 tensor<£f32>, %X: tensor<10xf32>, LY:
htmp = hlfir.elemental %149: Y%Xshape->expr<10xf32> { tensor<10xf32>) A
“bb0 (%i: index): 2 %0 = stablehlo.broadcast_in_dim %a:
%154 = hlfir.designate %X[%i]: ref<£f32> (tensor<f32>) -> tensor<10xf32>
%155 = fir.load 7%154: f£32 3 %1 = stablehlo.multiply %X, %0:
%156 = arith.mulf %151, %a: £32 tensor<10xf32>
hlfir.yield_element %156: £32 4 %2 = stablehlo.add %1, %Y: tensor<10
¥ xt32>
%1563 = hlfir.elemental %149: %Yshape->expr<10xf32> { 5 return %2, ha, hX, %AY: tensor<10xf32
L > tensor<f32>, tensor<10xf32>, tensor
%157 = arith.addf %154, 9%156: f£32 <10x£f32>
6
¥ Listing 5. AXPY function after Tensorization:
hlfir.assign %153 to %Z: expr<10xf32>, ref<10xf32> stableHLO
s
Listing 4. AXPY function before Tensorization: omp hlfir fir
Preliminary Benchmark Summary and Future Research

We evaluated the above AXPY operations kernel execution  XLA kernels demonstrate significant
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Figure 3. OpenMP Kernel vs. XLA kernel Peformance Comparison
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