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Problem Formulation: The Gap

To meet the intense computational demands of
AI, manufacturers have developed specialized
hardware, such as NVIDIA’s Tensor Cores, to ac-
celerate matrix operations.

However, despite sharing workload character-
istics with AI, scientific computing has yet to
fully leverage these advancements (or requires
painful manual work and expertise).

This research aims to bridge the gap between
Fortran-based scientific computing and AI-
specialized hardware by introducing a novel
compilation path that utilizes the XLA compiler.

Research Scope: The workdistribute Directive

Fortran natively supports array operations as
first-class language constructs. For example,
given arrays 𝑋 , 𝑌 , 𝑍 of the same size 𝑛, and a
scalar 𝑎. AXPY operation could be expressed in:

1 Z = a * X + Y

Listing 1. array like syntax

Traditionally, achieving parallelism required ex-
plicit do-loops rewriting within OpenMP:

1 !$omp target teams distribute parallel do
2 do i = 1, n
3 Z(i) = a * X(i) + Y(i)
4 end do

Listing 2. OpenMP syntax

However, OpenMP 6.0 standard introduced the
workdistribute directive, enabling automatic paral-
lelism for array syntax[1]. Notice the following
code is exactly the same with Listing 1 except
for the OpenMP directives:

1 !$omp target teams workdistribute
2 Z = a * X + Y
3 !$omp end target teams workdistribute

Listing 3. workdistribute syntax

Taking Advantage of AI Compiler: The Era of
Configurable Compiler Infrastructure

The modular design of the LLVM/MLIR frame-
work [2], which powers the flang compiler, pro-
vides the flexibility to decouple the frontend
from the backend.
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Figure 1. The Big Picture

This allows us to replace traditional backends
with specialized AI compilers that already offer
highly optimized code generation for GPUs and
other accelerators.

System Design: Intercept Modern Flang Compilation and OpenMP Runtime

Our custom LLVM/MLIR pass, WorkdistributeJITPass, extracts workdistribute regions IR. They are
then transformed into StableHLO and compiled JIT into a kernel binary for the target accelerator:
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Figure 2. The Compilation Architecture

Tensorization: Translate from Fortran IRs to StableHLO

Memory related operations in Fortran IRs like load, designate, apply are transformed to inputs and out-
puts in StableHLO, leaving only compuations of tensors.

1 omp.workdistribute {
2 %a = fir.load %148#0: f32
3 %tmp = hlfir.elemental %149: %Xshape ->expr <10xf32 > {
4 ^bb0(%i: index):
5 %154 = hlfir.designate %X[%i]: ref <f32 >
6 %155 = fir.load %154: f32
7 %156 = arith.mulf %151, %a: f32
8 hlfir.yield_element %156: f32
9 }

10 %153 = hlfir.elemental %149: %Yshape ->expr <10xf32 > {
11 ...
12 %157 = arith.addf %154, %156: f32
13 ...
14 }
15 hlfir.assign %153 to %Z: expr <10xf32 >, ref <10xf32 >
16 ...
17 }

Listing 4. AXPY function before Tensorization: omp hlfir fir

1 func.func @kernel (%Z: tensor <f32 >, %a:
tensor <f32 >, %X: tensor <10xf32 >, %Y:

tensor <10xf32 >) {
2 %0 = stablehlo.broadcast_in_dim %a:

(tensor <f32 >) -> tensor <10xf32 >
3 %1 = stablehlo.multiply %X, %0:

tensor <10xf32 >
4 %2 = stablehlo.add %1, %Y: tensor <10

xf32 >
5 return %2, %a, %X, %Y: tensor <10xf32

>, tensor <f32 >, tensor <10xf32 >, tensor
<10xf32 >

6 }

Listing 5. AXPY function after Tensorization:
stableHLO

Preliminary Benchmark

We evaluated the above AXPY operations kernel execution
time comparing traditional Fortran OpenMP kernels and
XLA kernels compiled from handwritten StableHLO on an
Nvidia A100 GPU:
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Figure 3. OpenMP Kernel vs. XLA kernel Peformance Comparison

Summary and Future Research

XLA kernels demonstrate significant
speedup over the native OpenMP ker-
nels, though total performance in-
cludes runtime overheads not fully
captured by GPU profiling.

Our other Matrix multiplication tests
also confirm the automatic generation
of NVIDIA CUTLASS tensor instruc-
tions.

Future work includes further system
integration and evaluation, mitigating
JIT overhead and broadening syntax
support.
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