1

1
2
3

Bridge Over Troubled Water: Offloading

OpenMP Regions to Al Compiler via StableHLO/XLA

Institute of

SCIENCE TOKYO Muyao Xiao ! Ivan R. lvanov 1 Jens Domke 2 Toshio Endo ! ® OIII
I Institute of Science Tokyo 2 RIKEN Center for Computational Science (R-CCS) akzn - R-CCS

Problem Formulation: The Gap

To meet the intense computational demands of
Al, manufacturers have developed specialized
hardware, such as NVIDIA's Tensor Cores, to ac -
celerate matrix operations.

However, despite sharing workload character-
istics with Al, scientific computing has yet to
fully leverage these advancements (or requires
painful manual work and expertise).

This research aims to bridge the gap between
Fortran-based scientific computing and Al-
specialized hardware by introducing a novel
compilation path that utilizes the XLA compiler.

Research Scope: The workdistribute Directive

Fortran natively supports array operations as
first-class language constructs. For example,
given arrays X, Y, Z of the same size n, and a
scalar a. AXPY operation could be expressed in:
Z = a *x X + Y
Listing 1. array like syntax

Traditionally, achieving parallelism required ex-
plicit do-loops rewriting within OpenMP:
l$omp target teams distribute parallel do
do 1 = 1, n
Z(1i) = a *x X(i) + Y(1)
end do

Listing 2. OpenMP syntax

However, OpenMP 6.0 standard introduced th
workdistribute directive, enabling automatic paral
lelism for array syntax[1]. Notice the followin
code is exactly the same with Listing 1 except
for the OpenMP directives:

| $omp target teams workdistribute
Z = a *x X + Y
! $omp end target teams workdistribute

Listing 3. workdistribute syntax

Taking Advantage of Al Compiler: The Era of
Configurable Compiler Infrastructure

The modular design of the LLVM/MLIR frame-
work [2], which powers the flang compiler, pro-
vides the flexibility to decouple the frontend
from the backend.

Frontend Backend

/ "! CPU }

MLIRS E ; / \
’ | sstvm or GP“}

£z

Specific _‘_/'__)
IRs [— :

s e
StableHLO, . I 9= —— e ¢
Halide, etc. | 5 LP@_—'— "! xPU
: : vy
DL Compilers

Figure 1. The Big Picture

This allows us to replace traditional backends
with specialized Al compilers that already offer
highly optimized code generation for GPUs and
other accelerators.

BUIIOMO’

© 00 N O oo s~ W N -

10
11
12
13
14
15
16
17

System Design: Intercept Modern Flang Compilation and OpenMP Runtime

Our custom LLVM/MLIR pass, WorkdistributedITPass, extracts workdistribute regions IR. They are
then transformed into StableHLO and compiled JIT into a kernel binary for the target accelerator:

Compile Time

[WorkdistributeJITPass]
MLIR
Fortran MLIR flang: str
SRC —flang—> fir optimization, —flang™ >
etc.
4) ¢, ' ™\ _ /, i' \\
kernel binary (—[MLIR](* | MR <—{ JIT Executor (Call
str str :
-) stablehlo omo. hlfir. fir' Y, } Extended OMP Runtime
p, htfir, 1 : Return——>»
: Runtime

Figure 2. The Compilation Architecture

Tensorization: Translate from Fortran IRs to StableHLO

Memory related operations in Fortran IRs like 10ad, designate, apply are transformed to inputs and out-
puts in StableHLO, leaving only compuations of tensors.

Tensorization

omp.workdistribute A — i func.func @kernel (%Z: tensor<f32>, Ya:
ha = fir.load 7,148#0: £32 tensor<£f32>, %X: tensor<10xf32>, LY:
htmp = hlfir.elemental %149: Y%Xshape->expr<10xf32> { tensor<10xf32>) A
“bb0 (%i: index): 2 %0 = stablehlo.broadcast_in_dim %a:
%154 = hlfir.designate %X[%i]: ref<£f32> (tensor<f32>) -> tensor<10xf32>
%155 = fir.load 7%154: f£32 3 %1 = stablehlo.multiply %X, %0:
%156 = arith.mulf %151, %a: £32 tensor<10xf32>
hlfir.yield_element %156: £32 4 %2 = stablehlo.add %1, %Y: tensor<10
¥ xt32>
%1563 = hlfir.elemental %149: %Yshape->expr<10xf32> { 5 return %2, ha, hX, %AY: tensor<10xf32
L > tensor<f32>, tensor<10xf32>, tensor
%157 = arith.addf %154, 9%156: f£32 <10x£f32>
6
¥ Listing 5. AXPY function after Tensorization:
hlfir.assign %153 to %Z: expr<10xf32>, ref<10xf32> stableHLO
s
Listing 4. AXPY function before Tensorization: omp hlfir fir
Preliminary Benchmark Summary and Future Research

We evaluated the above AXPY operations kernel execution XLA kernels demonstrate significant
time comparing traditional Fortran OpenMP kernels and speedup over the native OpenMP ker -
XLA kernels compiled from handwritten StableHLO onan nels, though total performance in-
Nvidia A100 GPU: cludes runtime overheads not fully

T 35 captured by GPU profiling.
~ OpenMP Kernel —— Speedup |
= XLA (StableHLO) Kernel o Our other Matrix multiplication tests
10t | {30 also confirm the automatic generation
[A L .
/\ | of NVIDIA CUTLASS tensor instruc-
3 - 2 tions.
N] 5
- A o .)
o) - Future work includes further system
10° ‘ . . . - .
s | o | - integration and evaluation, mitigating
Q 120 X .
£ . - t o JIT overhead and broadening syntax
— y -
- : . 9 support.
@) A] Q
] A A | o
S , m 15m
U 10 l
Q []
& - . [1] Ivanov et al. Automatic Parallelization and
?C) . _‘10 OpenMP Offloading of Fortran Array Notation.
o ! Cham: Springer Nature Switzerland, 2024. 1sbn:
X 978-3-031-72567-8.
10% £ [2] Lattner and Adve. LLVM: A Compilation Frame-
o - 5 work for Lifelong Program Analysis & Transfor-
., " Z mation. CGO '04. Palo Alto, California: IEEE Com-
m g s Egunm ®HE - puter Society, 2004. 1sbn: 0769521029.
Tl e 10 1f 1 1 100 1e 10 0
Array Size N

Figure 3. OpenMP Kernel vs. XLA kernel Peformance Comparison

SCA/HPCAsia 2026

