
Bridge Over Troubled Water: Offloading
OpenMP Regions to AI Compiler via StableHLO/XLA

Muyao Xiao 1 Ivan R. Ivanov 1,2 Jens Domke 2 Toshio Endo 1
1 Institute of Science Tokyo 2 RIKEN Center for Computational Science (R-CCS)

Problem Formulation: The Gap

To meet the intense computational demands of
AI, manufacturers have developed specialized
hardware, such as NVIDIA’s Tensor Cores, to ac-
celerate matrix operations.

However, despite sharing workload character-
istics with AI, scientific computing has yet to
fully leverage these advancements (or requires
painful manual work and expertise).

This research aims to bridge the gap between
Fortran-based scientific computing and AI-
specialized hardware by introducing a novel
compilation path that utilizes the XLA compiler.

Research Scope: The workdistribute Directive

Fortran natively supports array operations as
first-class language constructs. For example,
given arrays 𝑋 , 𝑌 , 𝑍 of the same size 𝑛, and a
scalar 𝑎. AXPY operation could be expressed in:

1 Z = a * X + Y

Listing 1. array like syntax

Traditionally, achieving parallelism required ex-
plicit do-loops rewriting within OpenMP:

1 !$omp target teams distribute parallel do
2 do i = 1, n
3 Z(i) = a * X(i) + Y(i)
4 end do

Listing 2. OpenMP syntax

However, OpenMP 6.0 standard introduced the
workdistribute directive, enabling automatic paral-
lelism for array syntax[1]. Notice the following
code is exactly the same with Listing 1 except
for the OpenMP directives:

1 !$omp target teams workdistribute
2 Z = a * X + Y
3 !$omp end target teams workdistribute

Listing 3. workdistribute syntax

Taking Advantage of AI Compiler: The Era of
Configurable Compiler Infrastructure

The modular design of the LLVM/MLIR frame-
work [2], which powers the flang compiler, pro-
vides the flexibility to decouple the frontend
from the backend.

Flang

Frontend

LLVM
IRs

CPU

GPU

xPU

Standard LLVM
Backend

MLIRs

Specific
IRs

Backend

DL Compilers

StableHLO,
Halide, etc.

Figure 1. The Big Picture

This allows us to replace traditional backends
with specialized AI compilers that already offer
highly optimized code generation for GPUs and
other accelerators.

System Design: Intercept Modern Flang Compilation and OpenMP Runtime

Our custom LLVM/MLIR pass, WorkdistributeJITPass, extracts workdistribute regions IR. They are
then transformed into StableHLO and compiled JIT into a kernel binary for the target accelerator:

Fortran
OpenMP

SRC

Compile Time

Runtime

MLIR
, ,

flang
LLVM IR

flang:
lowering,

optimization,
etc.

flang

Call

Extended OMP Runtime

Tensorization JIT ExecutorMLIR
strkernel binary

Execute

...

Pass N

WorkdistributeJITPass

Pass 1

MLIR
str

Dynamic
Lib

Return

a.out

MLIR
str

Figure 2. The Compilation Architecture

Tensorization: Translate from Fortran IRs to StableHLO

Memory related operations in Fortran IRs like load, designate, apply are transformed to inputs and out-
puts in StableHLO, leaving only compuations of tensors.

1 omp.workdistribute {
2 %a = fir.load %148#0: f32
3 %tmp = hlfir.elemental %149: %Xshape ->expr <10xf32 > {
4 ^bb0(%i: index):
5 %154 = hlfir.designate %X[%i]: ref <f32 >
6 %155 = fir.load %154: f32
7 %156 = arith.mulf %151, %a: f32
8 hlfir.yield_element %156: f32
9 }

10 %153 = hlfir.elemental %149: %Yshape ->expr <10xf32 > {
11 ...
12 %157 = arith.addf %154, %156: f32
13 ...
14 }
15 hlfir.assign %153 to %Z: expr <10xf32 >, ref <10xf32 >
16 ...
17 }

Listing 4. AXPY function before Tensorization: omp hlfir fir

1 func.func @kernel (%Z: tensor <f32 >, %a:
tensor <f32 >, %X: tensor <10xf32 >, %Y:

tensor <10xf32 >) {
2 %0 = stablehlo.broadcast_in_dim %a:

(tensor <f32 >) -> tensor <10xf32 >
3 %1 = stablehlo.multiply %X, %0:

tensor <10xf32 >
4 %2 = stablehlo.add %1, %Y: tensor <10

xf32 >
5 return %2, %a, %X, %Y: tensor <10xf32

>, tensor <f32 >, tensor <10xf32 >, tensor
<10xf32 >

6 }

Listing 5. AXPY function after Tensorization:
stableHLO

Preliminary Benchmark

We evaluated the above AXPY operations kernel execution
time comparing traditional Fortran OpenMP kernels and
XLA kernels compiled from handwritten StableHLO on an
Nvidia A100 GPU:

101 102 103 104 105 106 107 108 109

Array Size N

101

102

103

104

Ke
rn

el
 E

xe
cu

tio
n

Ti
m

e
on

 G
PU

 (
s)

OpenMP Kernel
XLA (StableHLO) Kernel

0

5

10

15

20

25

30

35

Sp
ee

du
p

(x
)

Speedup

Figure 3. OpenMP Kernel vs. XLA kernel Peformance Comparison

Summary and Future Research

XLA kernels demonstrate significant
speedup over the native OpenMP ker-
nels, though total performance in-
cludes runtime overheads not fully
captured by GPU profiling.

Our other Matrix multiplication tests
also confirm the automatic generation
of NVIDIA CUTLASS tensor instruc-
tions.

Future work includes further system
integration and evaluation, mitigating
JIT overhead and broadening syntax
support.

[1] Ivanov et al. Automatic Parallelization and
OpenMP Offloading of Fortran Array Notation.
Cham: Springer Nature Switzerland, 2024. isbn:
978-3-031-72567-8.

[2] Lattner and Adve. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transfor-
mation. CGO ’04. Palo Alto, California: IEEE Com-
puter Society, 2004. isbn: 0769521029.

Low
ering

Tensorization

SCA/HPCAsia 2026

