
Jihoon Choi, Young-Woo Kwon
Intelligent Software Systems Lab, Kyungpook National University

Dynamic GPU Resource Allocation System using 

OpenWhisk and Gateway Architecture

System Architecture
Our platform consists of a high-performance control plane and an intelligent data-aware execution 

layer.

• Relay Gateway: A Spring Boot-based middleware that manages user sessions and metadata via 

Redis. It acts as the brain that synchronizes compute requests and prefetching signals.

• Dynamic Compute Orchestrator: Utilizes Apache OpenWhisk and Docker SDK to provision GPU-

attached containers instantly. Unlike static clusters, it spawns "Session Pods" only during active

computation.

• Intelligent Storage Fabric: A centralized TrueNAS (ZFS) backend combined with an AI Prefetcher. It 

monitors access logs to identify temporal patterns in user workflows.

Introduction & Objectives
• The Problem: OpenWhisk-based Serverless architecture solves the

scheduling latency, Data I/O remains a critical bottleneck. Fetching

large AI datasets from a central NAS (TrueNAS) upon container

startup causes significant "Cold Start" delays.

• Proposed Solution: We introduce an Intelligent Prefetching Layer

utilizing LSTM (Long Short-Term Memory). This system predicts

required datasets based on user session history and proactively

moves data from NAS to the specific compute node's local storage

before the workload begins.

Methodology: LSTM-based Prediction
• Intelligent Prefetching Framework

• Detailed Model Analysis

The inference engine operates in the critical path of the container

provisioning process.

1. Trigger: When 'OpenWhisk' receives a session creation request:

- The system queries the User's History from the Log Database.

2. Inference:

- The LSTM model calculates the probability           for the top-

candidate files.

- Selection Criteria: Files are selected for prefetching if                           

(Confidence Threshold, e.g., 0.75).

3. Action:

- The Orchestrator instructs the assigned Kubernetes Node to

'rsync' or 'cache-warm' the predicted files from TrueNAS in parallel

with the Docker container startup.

• Inference & Prefetching Logic
The core innovation is treating file system interactions as a time-series prediction

task.

Data Engineering for Storage Logs

• Session-based Labeling: Access logs are partitioned into logical sessions using a

30-minute inactivity threshold.

• Vectorization: Each file access event is transformed into a feature vector

• Pattern Learning: The model learns from the sequence of the last 'k' accesses to

predict the most likely 't+1' file.

Model Architecture & Size

• We employ a lightweight design to ensure sub-millisecond inference:

• Embedding Layer: Compresses sparse file IDs into a 64-dim semantic space.

• Stacked LSTM Layers: Two layers (128 and 64 units) to capture both short-term

triggers (e.g., config file ➔ dataset) and long-term intentions.

• Dense Head: A Softmax layer mapping to the total file vocabulary, outputting a

probability distribution

• Efficiency: The model size is kept under 5MB, enabling fast deployment and low

CPU overhead.

Layer Type Configuration / Shape Activation Rationale

Input Sequence Input -
Receives past $k$ file access logs (e.g., 

$k=10$).

1 Embedding -
Reduces sparsity of File IDs; clusters 

similar files.

2 LSTM (1) 128 Units, Return Sequences=True Tanh
Captures short-term local dependencies 

(e.g., code -> lib).

3 LSTM (2) 64 Units, Return Sequences=False Tanh
Captures long-term global patterns (e.g., 

train -> eval).

4 Dense (Head) Softmax
Outputs probability distribution 

over all files.

Expected Impact & Evaluation Plan
• I/O Latency Hiding: By predicting and moving

data during the container provisioning phase,

we expect to hide up to 80-90% of data

loading time for repetitive AI workflows.

• System Scalability: The lightweight LSTM

ensures minimal CPU overhead on the Relay

Gateway (Inference time < 1ms).

• Bandwidth Optimization: The confidence-

based trigger (θ) prevents unnecessary data

movement, preserving network bandwidth in

distributed cluster environments.

Proposed Evaluation Metrics & Scenarios

Conclusion & Future Work
By combining OpenWhisk's flexible scheduling with LSTM's temporal learning capabilities, the

proposed system minimizes user-perceived latency. Future work will involve evaluating the

architecture under diverse multi-user workloads and implementing Reinforcement Learning

for advanced cache eviction policies.

Key Contributions

• Decoupling: Successfully separated storage optimization from compute resource allocation.

• Intelligence: First integration of LSTM sequence prediction in a serverless GPU relay 

architecture.

• Latency Hiding: Demonstrated theoretical potential to overlap I/O and provisioning paths.

Development Roadmap (Future Work)

• Phase 1: Multi-user pattern interference analysis.

• Phase 2: Reinforcement Learning (RL) based cache eviction policies.

• Phase 3: Scaling to heterogeneous GPU clusters (RTX 3090/4090 mixed).

Scenario
Storage 
Method

Expected Data 
Readiness

Baseline
Standard NFS 

Mount

Low 
(Sequential 

Wait)

Manual
Node Local 

SSD 
(Preloaded)

High (Static)

Proposed
LSTM-driven 
Prefetching

High (Dynamic 
& Automated)

This work was supported by the National Research Foundation of Korea(NRF) grant funded by 
the Korea government(MSIT) (RS-2021-NR060080).


	슬라이드 1

