
6, Performance Evaluation
We conducted an experiment using
a logic circuit simulator(Verilator)
to input 10,000 words of randomly
compressed data with different
average compression rates for each
channel to a module like Fig.6.
We evaluated the fairness of
channels selection and the
minimum required capacity of the
MCD-side FIFO (maximum value of FIFO used capacity
during the experiment) to prevent the MCD-side FIFO from
becoming full and causing a deadlock.
6.1, Fairness of data selection
• To evaluate the fairness of the proposed algorithms, we compare the time until all data have

been read. In this evaluation, output channels will be read continuously and individually.
• The TimeStamp implementation is the fairest with both FIFO capacities of 32 (Fig. 7) and

512 (Fig. 8).

6.2, MCD-Side FIFO Capacity Required to Avoid Deadlock
• We evaluate the FIFO capacity required by each implementation to avoid deadlock.
• In this evaluation, FIFOs are read only when data are available on all output FIFOs to

simulate the situation with computation logic. Deadlock may occur if the capacity of the
FIFOs on the MCD side is insufficient.

• The Timestamp implementation is also the fairest in this evaluation for both FIFO
capacities of 32 (Fig. 9) and 512 (Fig. 10).

• The TimeStamp implementation also shows a constant progression compared to the others
(Fig. 11).

• Timestamp implementation’s small MCD minimum FIFO capacity means that there was
always little data waiting for synchronization of data reads.

Time-Division Multiplexing of Multiple
 Compressed DataStreams on FPGAs

Reference :[1]DeHon, André. "Fundamental underpinnings of reconFig.urable computing architectures." Proceedings of the IEEE 103.3
(2015): 355-378.[2] MONDIGO, Antoniette, et al. Scalability analysis of deeply pipelined tsunami simulation with multiple fpgas. IEICE
TRANSACTIONS on Information and Systems, 2019, 102.5: 1029-1036.[3] Sano, Kentaro, Yoshiaki Hatsuda, and Satoru Yamamoto. "Multi-
FPGA accelerator for scalable stencil computation with constant memory bandwidth." IEEE Transactions on Parallel and Distributed
Systems 25.3 (2013): 695-705.[4] Ueno, Tomohiro, Kentaro Sano, and Satoru Yamamoto. "Bandwidth compression of floating-point
numerical data streams for FPGA-based high-performance computing." ACM Transactions on ReconFig.urable Technology and Systems
(TRETS) 10.3 (2017): 1-22.

1, Background
• Stream computing is a promising computational architecture that

outperforms existing architectures in terms of memory performance and
power consumption [1,2,3].

• Combining it with low-latency stream compression techniques can
improve logical communication and memory bandwidth, thereby
improving application throughput and scalability.

• In this study, we propose an algorithm for allocating communication
bandwidth to each stream in a module that serializes compressed data
block streams with multiple variable write rates in a general-purpose
communication data compression platform proposed by Ueno et al. at
RIKEN [4], and we compare the performance of the HDL implementations
of each algorithm through logic circuit simulation.

3, Definition Of Problem
Stalls due to synchronization waits may result in a decrease in operation
latency or a deadlock due to the FIFO becoming full(Fig. 3).

Therefore, the MCS Selector needs to read blocks
• from channels frequently with high input data rates

(i.e., low compression ratios)
• from channels infrequently with low input data rates

(i.e., high compression ratios).

4, MCS Channel Selection Algorithm
We implement and compare the performance of five MCS algorithms.
 The algorithms, except for Round-Robin, are priority-based, reading data
from the FIFO of the input channel with the highest priority.

5, HDL Implementation
• In the four methods other than RR,

we use a pipelined selector tree
(Fig. 5) based on 2-ch selectors
(Fig. 4) to choose the FIFO with the
 highest priority.

• Written in Chisel, which allows the number of channels to be parameterized, and automatic
construction of a tree corresponding to any number of channels.

7, Conclusion
In this study, we proposed five channel selection algorithms (RR, FC, SC, SCFC, and TS) for
serializing compressed data streams to resolve data rate imbalances that occur when the
compression ratio differs for each channel in FPGA-based HPC compressed data stream
processing. We implemented them in HDL and evaluated its performance on a circuit
simulator. The performance evaluation showed that TS produced the most fair data output.
In addition, to prevent deadlock caused by the FIFO on the MCD side filling up, we investigated
the FIFO size that would prevent the FIFO on the MCD side from becoming full, and found that
TS was able to prevent deadlock with the smallest FIFO capacity.

2, Data Compression Platform
The data compression platform proposed by Ueno et al [4]. consists of the
following modules:
l VariableToFixedConverter(VFC): Packs multiple variable-length

compressed data into one fixed-length block.
The clock cycles required to output a fixed-length block decreases
as the data compression rate increases.

l MultiChannelSerializer(MCS) : Serializes block streams input from
multiple channels and outputs them to communication modules.

l MultiChannelDeserializer(MCD) : Distributes the blocks of the
serialized blockstream to their respective destination channels.

l FixedToVariabelConverter(FVC) : Receives a block and outputs the
compressed data contained in the block one per clock.

By incorporating these into the application's computational pipeline as
shown in Fig. 2, we aim to improve communication throughput.

Algorithm Primary Priority Secondary Priority
Round-Robin
(RR)

- -

used FIFO Capacity
(FC)

Used FIFO capacity on
MCS

Fixed priority

StallCycle
(SC)

Write stall count for each
FIFO on MCS

Fixed priority

StallCycle and used
FIFO Capacity
(SCFC)

Write stall count for each
FIFO on MCS

Used FIFO capacity on
MCS

TimeStamp
(TS)

Oldness of the head data in
each FIFO

Fixed priority Acknowledgements :
This work has been partially supported by Japan Science and Technology Agency (JST) as part of
Adopting Sustainable Partnerships for Innovative Research Ecosystem (ASPIRE) Grant Number JPMJAP2341.

Takato Abe1, Tomohiro Ueno2, Norishita Fujita3 and Taisuke Boku3
1.Degree Programs in Systems and information Engineering, University of Tsukuba. Japan

2.RIKEN Center for Computational Science, Japan
3.Center for Computational Sciences, University of Tsukuba, Japan

Even if the number of channels
is increased, the operating
frequency is less affected.

Number of Channels 32ch
Average Compressed Data Length 16bit
Standard deviation of the average
compressed data length of each
channel input data sequence

6.08bit

Fig. 7 Fig. 8

Fig. 9 Fig. 10

Fig. 2

Fig. 4 Fig. 5

Fig. 11

Constant
Progress

Smallest Minimum
FIFO Capacity

Smallest
Range

channels were selected fairly even when data communication was in progress.

Fig. 1

Tsunami Simulation by Stream Computing [3]

Fig. 3

Fig. 6

