1, Background

 Stream computing is a promising computational architecture that
outperforms existing architectures in terms of memory performance and
power consumption [1,2,3].

5, HDL Implementation s — L —
* |Inthe four methods other than RR,
we use a pipelined selector tree
(Fig. 5) based on 2-ch selectors

2chSelector 2chSelector 2chSelector 2chSelector

— 1 — 1

YY VY Y YY VY Y
dA dB sAs dA dB sAs

2chSelector 2chSelector

Fig.‘l [ 3273pipe_|inestages ] =l """ (Flg. 4) tO ChOOSG the FIFO Wlth the |
288 operators, 8 inputs / 8 outputs . . . ;
‘_“:&:7 - \ S;E Scaling Performance by highest priority. v 2(::::sele‘::t‘or
e = - \ \ """ o= increasing pipeline-stages Even if the number of channels | oata Register St .
..-..----\ﬂ‘--:-I.T-[--, t t t b d .dth . . s
v T e NN\ — at constant bandwi IS Increased, the operating Fig. 4 Fig. 5
\ \ ~ 6 SPEs frequency is less affected.

Tsunami Simulation by Stream Computing [3]

* Combining it with low-latency stream compression techniques can
Improve logical communication and memory bandwidth, thereby

 Written in Chisel, which allows the number of channels to be parameterized, and automatic
construction of a tree corresponding to any number of channels.

improving application throughput and scalability. 6, Performance Evaluation Fe s scrame . MCD FIFO Capacity
* |nthis study, we propose an algorithm for allocating communication We conducted an experiment using gf,;phth*\lg ~ 32 Block or 512Block or large enough to store all block orm%:?&g:zus
bandwidth to each stream in a module that serializes compressed data |3 logic circuit simulator(Verilator) J N Y y
block streams with multiple variable write rates in a general-purpose to input 10,000 words of randomly | o =y =L » r
communication data compression platform proposed by Ueno et al. at compressed data with different e g Y o |y
RIKEN [4], and we compare the performance of the HDL implementations |average compression rates for each veC ﬂﬁmggf, T o | —>
of each algorithm through logic circuit simulation. channel to a module like Fig.6. : lﬂ%
I ‘ Record used FIFO capacity on
2, Data Compression Platform \C/\:Zf]\;ztast:gziz?g:;iﬁ eo f Wihen synchionous read
The data compression platform proposed by Ueno et al [4]. consists of the minimum required capacity of the _ - N _
following modules: Number of Channels 32ch

MCD-side FIFO (maximum value of FIFO used capacity
during the experiment) to prevent the MCD-side FIFO from
becoming full and causinga deadlock Standard deviation of the average 6.08bit
i ) ) compressed data length of each
6.1, Fairness of data selection channel input data sequence
* To evaluate the fairness of the proposed algorithms, we compare the time until all data have
been read. In this evaluation, output channels will be read continuously and individually.
* The TimeStamp implementation is the fairest with both FIFO capacities of 32 (Fig. 7) and

® VariableToFixedConverter(VFC): Packs multiple variable-length
compressed data into one fixed-length block.
hThe clock cycles required to output a fixed-length block decreases
as the data compression rate increases.
® MultiChannelSerializer(MCS) : Serializes block streams input from
multiple channels and outputs them to communication modules.
® MultiChannelDeserializer(MCD) : Distributes the blocks of the

Average Compressed Data Length 16bit

. . . . 512 (Fig. 8).
serialized blockstream to their respective destination channels. 8 |
. . . Fig. 7 Range of time of completion reading Fig. 8 Range of time of completion reading
® FixedToVa nabelConverter(FVC) - Receives a block and Outputs the each channel data(FIFO capacity=32) each channel data(FIFO capacity=512)
. . — 250001 — 250001
compressed data contained in the block one per clock. E E T
By incorporating these into the application's computational pipeline as £ 50000 T £ 50000
shown in Fig. 2, we aim to improve communication throughput. E T E T
Fig. 2 ’ 128bit | (zj 15000 1 == == /f? § 15000 ;,:-
e oyl D o P4 smatest || 5 ——
© 10000 - - | © 10000 -
§ Range é
Olgri]sglii;on ssor VFC FIFO »\ /I»IE i COS;S:E?]EO” g 5000 - g 5000
o |mm—p{ o B = =
“Fipelne. | vre ‘E : E e O R SC FC SCFC TS TR SC FC SCFC TS
Data rate ldata/clock  1data/clock ~ 1/4~1/32 : . ) ) .
block/clock - 6.2, MCD-Side FIFO Capacity Required to Avoid Deadlock
P N * We evaluate the FIFO capacity required by each implementation to avoid deadlock.
* |nthis evaluation, FIFOs are read only when data are available on all output FIFOs to
e _ene simulate the situation with computation logic. Deadlock may occur if the capacity of the
3, Definition Of Problem S Ny
FIFOs on the MCD side is insufficient.

Stalls due to synchronization waits may result in a decrease in operation
latency or a deadlock due to the FIFO becoming full(Fig. 3).

Fig. 3 Synchronous

* The Timestamp implementation is also the fairest in this evaluation for both FIFO
capacities of 32 (Fig. 9) and 512 (Fig. 10).

Computation * The TimeStamp implementation also shows a constant progression compared to the others
FIFO FVC Decompressor Stage (Flg 11)
oC Block ata egister . . . . . .
BlocK Buffer : - * Timestamp implementation’s small MCD minimum FIFO capacity means that there was

2, Stall prevents blocks from being consumed and data data data I
new blocks from being written to the FIFO

always little data waiting for synchronization of data reads.

|-> channels were selected fairly even when data communication was in progress.

FIFO FVC Decompressor ‘

ID g Full .
MCD gt Block Block Block Block R £ Register

Sel Lock..4 . ‘} .
Fig. 9 MCD Minimum FIFO Capacity Fig. 10 MCD Minimum FIFO Capacity Fig. 11 Reading Data Progress Rate Per Clock
Sell (MCS FIFO capacity=32) (MCS FIFO capacity=512) (MCSFIFOCapacity=32, Sync)

1.0 — RR
SC

\ FVC Decompress

Buffer Empty | Register

Empt
Pty 1, Data is not available
and a stall occurs

Therefore, the MCS Selector needs to read blocks

* from channels frequently with high input data rates
(i.e., low compression ratios)

* from channels infrequently with low input data rates
(i.e., high compression ratios).

4, MCS Channel Selection Algorithm

We implement and compare the performance of five MCS algorithms.
The algorithms, except for Round-Robin, are priority-based, reading data
from the FIFO of the input channel with the highest priority.

Algorithm Primary Priority Secondary Priority

Round-Robin - -

(RR)

used FIFO Capacity Used FIFO capacity on Fixed priority
(FC) MCS

StallCycle Write stall count foreach  Fixed priority
(SC) FIFO on MCS

StallCycle and used Write stall count foreach  Used FIFO capacity on
FIFO Capacity FIFO on MCS MCS
(SCFC)

TimeStamp Oldness of the head data in Fixed priority
(TS) each FIFO

700 A

— FC

1 — scrFc Constant

— 715 7

o
o

500 A

o
)
|

(Unit:Block)
(@)}
o
o

Ul
o
o

o
>

400 A

o
[N)
)

Progress Rate Per Clock

N
o
o

©
o
!

Smallest Minimum
FIFO Capacity |

200 -

/

MCD Minimum FIFO Capacity (Unit:Block)
w
o
o

MCD Minimum FIFO Capacity
S
o

=
o
o

7, Conclusion

In this study, we proposed five channel selection algorithms (RR, FC, SC, SCFC, and TS) for
serializing compressed data streams to resolve data rate imbalances that occur when the
compression ratio differs for each channel in FPGA-based HPC compressed data stream
processing. We implemented them in HDL and evaluated its performance on a circuit
simulator. The performance evaluation showed that TS produced the most fair data output.
In addition, to prevent deadlock caused by the FIFO on the MCD side filling up, we investigated
the FIFO size that would prevent the FIFO on the MCD side from becoming full, and found that
TS was able to prevent deadlock with the smallest FIFO capacity.

Reference :[1]DeHon, André. "Fundamental underpinnings of reconFig.urable computing architectures." Proceedings of the IEEE 103.3
(2015): 355-378.[2] MONDIGO, Antoniette, et al. Scalability analysis of deeply pipelined tsunami simulation with multiple fpgas. IEICE
TRANSACTIONS on Information and Systems, 2019, 102.5: 1029-1036.[3] Sano, Kentaro, Yoshiaki Hatsuda, and Satoru Yamamoto. "Multi-
FPGA accelerator for scalable stencil computation with constant memory bandwidth." IEEE Transactions on Parallel and Distributed
Systems 25.3 (2013): 695-705.[4] Ueno, Tomohiro, Kentaro Sano, and Satoru Yamamoto. "Bandwidth compression of floating-point
numerical data streams for FPGA-based high-performance computing." ACM Transactions on ReconFig.urable Technology and Systems
(TRETS) 10.3 (2017): 1-22.

Acknowledgements:
This work has been partially supported by Japan Science and Technology Agency (JST) as part of L=
Adopting Sustainable Partnerships for Innovative Research Ecosystem (ASPIRE) Grant Number JPMJAP2341. )




